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Abstract

Drift Compression and Final Focus Systems for Heavy Ion Inertial Fusion

by

Michiel Jan Laurens de Hoon

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Robert G. Littlejohn, Co-chair
Dr. Edward P. Lee, Co-chair

Longitudinal compression of space-charge dominated beams can be achieved by

imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such

that it is removed by the longitudinal space-charge repulsion by the time the beam reaches

the end of the drift compression section. The transverse focusing lattice should be designed

such that all parts of the beam stay approximately matched, while the beam smoothly

expands transversely to the larger beam radius needed in the final focus system following

drift compression. In this thesis, several drift compression systems were designed within

these constraints, based on a given desired pulse shape at the end of drift compression. The

occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the

sensitivity of drift compression to errors in the initial velocity tilt and current profile was

studied. These calculations were done using a new computer code that accurately calculates

the longitudinal electric field in the space-charge dominated regime.
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In final focus, the beam is usually expanded transversely before it is focused onto

a small spot. This may cause third-order aberrations to significantly affect the beam qual-

ity. Previously, it has been suggested that octupoles be used to correct these aberrations.

However, it is shown that for modest convergence angles of the beam, a considerable im-

provement can be achieved by rematching the quadrupoles in the final focus system, if these

aberrations are taken into account in the rematching process. For larger convergence angles,

third-order aberrations cause a significant halo formation.

Detailed particle-in-cell simulations were performed to better understand the ex-

perimental results from the Scaled Final Focus Experiment at LBNL, which is a replica

of a driver-scale final focus system. The simulations showed that expanding beams may

suffer a substantial emittance increase due to their nonlinear space-charge field. Phase-

space comparisons between the experiment and simulations showed reasonable agreement.

Of particular interest was the beam rotation that has been measured in the experiment.

Simulations showed that this may have been caused by a minor rotation of one or more of

the quadrupoles in the experiment.

Professor Robert G. Littlejohn
Dissertation Committee Co-chair

Dr. Edward P. Lee
Dissertation Committee Co-chair
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Chapter 1

Introduction

The past fifty years have been an age of rapid economic growth. Global prosper-

ity increased at a rate unparalleled in human history. Although some countries enjoyed a

larger share of the new wealth than others, the trend of rapid economic growth is world-

wide. It was made possible by advances in science and technology, expressed in the form of

industrialization and improved efficiency [85].

The greater prosperity around the world enabled it to sustain a larger population.

The world population has more than tripled in the last century, and is predicted to grow by

nearly 80 million people annually during the next 25 years. Most of the population growth

will occur in developing countries [99].

The combination of the rapid economic growth and an increasing world population

resulted in an ongoing depletion of the global fossil fuel reserves. Additionally, the increased

emissions of carbon dioxide gas lead to the greenhouse effect, causing a global temperature

increase. The subsequent melting of ice in the polar regions causes the sea level to rise,
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endangering low-lying countries such as Bangladesh and the Netherlands. Furthermore, the

dumping of melted ice into the saltwater of the surrounding oceans may disrupt ocean flows,

which would severely change climate conditions around the world [57].

The increasing awareness of these environmental issues as well as concern over

depletion of the limited global reserves of fossil fuel, which are furthermore located in

a relatively small number of countries, spurred a search for alternative energy sources.

Besides renewable energy sources and nuclear fission, nuclear fusion, if proven feasible and

economical, can contribute significantly to the long-term global energy need. While nuclear

fission provides a substantial part of the energy need in developed countries, its desirability

is limited due to the possibility of nuclear accidents, the generation of long-term radioactive

waste, and proliferation [53].

1.1 The Role of Fusion in Meeting the Global Energy De-

mand

In order to keep up with the rising global demand for energy, new sources of energy

have to be developed. Fusion energy is attractive for several reasons.

The fuel needed for fusion energy consists of lithium and deuterium. Vast reserves

are widely available of both of these. Fusion blankets use and consume additional materials,

such as beryllium, depending on design. However, again supplies are abundant compared

to the quantities needed. Neither lithium nor deuterium are toxic or radioactive.

While burning fossil fuel produces greenhouse gases that cause global warming,

the emissions due to fusion energy are practically zero. In addition, no significant release
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of tritium during an accident is conceivable, if the plant is carefully designed.

Fusion does not involve any highly radioactive reaction products such as those

generated in fission reactions. The radioactive waste created by fusion is therefore less

hazardous than the waste created by fission.

Fusion reactors are inherently safe, because they contain only a small amount of

fuel at any given time. Furthermore fusion is not based on a chain reaction as in case of

nuclear fission. The occurrence of large-scale accidents with grave consequences for the

general public is therefore very unlikely.

Whether fusion will be attractive as an energy source ultimately depends on its

cost of electricity in comparison to other energy sources. Because of the environmental ad-

vantages of fusion, it does not need to be the cheapest source of energy; an affordable cost

of electricity will suffice. Figure 1.1 shows the estimated cost of electricity for several con-

ceptual fusion power plant designs, as well as for natural gas, coal and nuclear fission [63].

Although natural gas may remain the cheapest source of energy in the near future, partic-

ularly heavy ion fusion is expected to be able to provide electricity at a reasonable cost.

Note that the price of natural gas may escalate in the decades to come due to depletion.

Research and development in fusion energy may provide spin-offs in technology

areas such as superconducting magnets, high-power lasers, and supercomputing [53]. Com-

mercial fusion power plants may be built by the middle of the 21st century, gradually

replacing fossil fuel and nuclear fission plants [53].
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Figure 1.1: The estimated cost of electricity for several conceptual fusion power plant designs
in comparison to natural gas, coal, and fission [63].

1.2 Principles of Fusion

Research on fusion as an economically viable energy source has been conducted

for over four decades now [30], in which tremendous progress has been made. In order for

fusion to fulfill its promise of clean and abundant energy, we need to proceed and improve

our understanding of the physics involved. To appreciate the difficulties encountered in

making fusion a reality, we will first discuss its principles.

Fusion energy is released when two light ions merge to form a heavier one. Fusion

reactions commonly considered for energy production are:

D + T → 4He (3.5 MeV) + n (14.1 MeV);
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D + D → T (1.01 MeV) + p (3.02 MeV);

D + D → 3He (0.82 MeV) + n (2.45 MeV);

D + 3He → 4He (3.66 MeV) + p (14.6 MeV);

T + T → 4He + 2 n + 11.3 MeV;

p + 11B → 3 4He + 8.68 MeV.

If we only consider the products of these fusion reactions, p-11B fusion would be the most

attractive candidate for use in power plants. No neutrons are produced in this reaction,

which would avoid activation problems in a fusion plant. In addition, the fusion energy is

released in the form of fast-moving charged particles, whose energy can be converted into

electricity using high-efficiency direct converters.

For a mono-energetic beam with number density nb and velocity v impinging on a

stationary target with number density nt, the number of beam particles that have undergone

a fusion reaction while traveling a distance dx is proportional to the cross section σ(v):

dnb = −σ(v)nbntdx = −σ(v)nbntvdt, (1.1)

in which the cross section σ(v) depends on the beam velocity v. For a fusion fuel at a

temperature T , we average the right-hand-side of this equation over the thermal velocity

distribution of the fuel. Instead of the cross section at a fixed velocity v, we now consider

the reaction rate parameter 〈σv〉, which is the product of the cross section σ and velocity v

averaged over a Maxwellian velocity distribution.

The reaction rate parameter is plotted as a function of temperature in figure 1.2.

The DT reaction has the largest reaction rate parameter and is therefore usually considered
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Figure 1.2: Reaction rate parameters for Maxwellian distributions as a function of tem-
perature. These data were taken from the DATLIB cross section and reactivity parameter
library [29].

to be the prime candidate for commercial fusion plants. The reaction rate parameter reaches

a maximum at a temperature of 20 keV. At such high temperatures, the deuterium and

tritium fuel will be ionized and form a plasma. The two DD reactions can significantly

contribute to the fusion power generated in DT fuel. Unfortunately, the reaction rate

parameter for p-11B fusion is smaller by orders of magnitude.

Suppose we have a fuel consisting of an equal mixture of deuterium and tritium

with initial combined density n0. The burnup fraction fb(t) is defined in terms of the fuel
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density n(t) at time t by n(t) = n0 (1− fb(t)). It can be calculated from equation (1.1) as

fb(t) =
1
2n0 〈σv〉 t

1
2n0 〈σv〉 t + 1

. (1.2)

This equation shows that if we are able to confine a burning plasma longer, we will improve

the burnup fraction of the fuel and thereby the fusion plant economics. The burnup time

τb is defined as

τb ≡ [n0 〈σv〉]−1 . (1.3)

Our aim is to confine a burning plasma on a time scale comparable to the burnup time.

There are three ways to confine and heat a plasma sufficiently in order for fusion

to take place. Whereas gravitational confinement enables fusion to occur in stars, the two

main approaches for man-made fusion are based on magnetic or inertial confinement.

In magnetic fusion energy (MFE), a burning fusion plasma is confined using strong

magnetic fields, which are created by external coils as well as by electric currents flowing

in the fusion plasma itself. Since magnetic fields exert only transverse forces on charged

particles, they can move freely along magnetic field lines, while their motion across field

lines is impeded. By bending the field lines around in a toroidally shaped fusion reactor

(tokamak), the loss of plasma ions from the machine can be minimized. In addition, the

reduced transverse mobility of the plasma ions prevents heat leaking away from the fusion

plasma. A conceptual drawing of the DIII-D tokamak of General Atomics is shown in

figure 1.3.

In practice, various instabilities occur in magnetically confined plasmas. Macro-

scopic distortions of the plasma are called magnetohydrodynamic (MHD) instabilities,

whereas growing waves in the plasma are referred to as microinstabilities. Both may cause
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Figure 1.3: The DIII-D Tokamak at General Atomics. Figure used with permission of
General Atomics.

an increase in the heat conduction and particle diffusion rate across magnetic field lines.

In addition, various engineering problems need to be solved before magnetic fusion

can become a viable source of energy. The magnet coils in a tokamak reactor need to

be strong enough to confine the burning plasma, and should be able to withstand the

tremendous pressures exerted on them by the magnetic field. The need for cooling is an

additional difficulty when using superconducting magnets. Maintenance may be difficult

in the presence of activation by the 14 MeV neutrons produced in DT fusion. Heat loss

from the plasma due to radiation by plasma impurities can significantly lower the plasma

temperature. The bombardment of the reactor wall by high-energy alpha particles can

cause blisters, which eventually rupture and lead to plasma contamination. Finally, the
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need for plasma stability requires a large machine size, which is economically unattractive.

In inertial fusion energy (IFE), a small pellet of DT fuel is compressed to very

high densities by heating it with a laser or ion beam. In case of ion beams, either light

ions or heavy ions can be used [58]. A hot spot in the center of the fuel pellet, containing

only a fraction of the total fuel mass, is heated during compression to about 5 to 10 keV,

causing fusion to occur. Once the hot spot is ignited, the alpha particles produced in the

fusion reactions heat up the fuel surrounding the hot spot, enabling a fusion burn wave to

propagate outward from the hot spot. Due to the inertia of the fuel, the fuel pellet will

remain compressed long enough for a substantial fraction of the fuel to undergo fusion.

By igniting pellets several times per second, sufficient fusion energy can be released for

commercial electricity production.

Figure 1.4 shows a diagram of the energy flow in a power plant based on inertial

fusion [86]. Assuming a driver efficiency ηD, the input energy Ein is used by the driver to

produce a high-power laser or ion beam with energy ηDEin. The yield is defined as the

fusion energy released from one fuel pellet, while the gain G is the ratio of the yield to the

required driver energy. The yield can then be written as GηDEin, and is converted into

electricity in a conventional steam cycle with thermal efficiency ηTh. A fraction f of the

generated electricity Eout = ηThGηDEin is recycled to the driver, so that the next fuel pellet

can be ignited.

From this flow diagram, we find that fηThGηD = 1 is a condition for continuous

operation of the power plant. For a recycling fraction f less than 25%, and assuming a

thermal efficiency of 40%, we find that the product ηDG should be greater than ten [86].
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Figure 1.4: Energy flows in a power plant based on inertial fusion [86].

For contemporary target designs, a yield of 430 MJ at a driver energy of 6.5 MJ

has been predicted from simulations [93]. Typically a heavy-ion accelerator has an efficiency

of about 25%, giving a value of ηDG equal to 16. If we are able to ignite fuel pellets at

a rate of 5 Hz, we can generate 2150 MW thermal energy, which corresponds to 860 MW

electric energy for a thermal efficiency of 40%.

Inertial fusion micro-explosions can be driven directly or indirectly. In case of

directly driven targets, the laser or ion beam hits the DT fuel itself and compresses it. In

indirect drive, the DT fuel pellet is placed inside a cylindrically symmetric casing usually
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1 centimeter

Figure 1.5: A hohlraum for heavy-ion driven IFE, showing a DT fuel pellet inside a cylin-
drical casing lined with metal [63].

referred to by its German term hohlraum. Figure 1.5 shows a conceptual diagram of a

hohlraum. In the case of laser fusion, the laser beams enter through holes on both sides of

the hohlraum and deposit their energy on the inside of its walls. The heated walls create

a uniform x-ray radiation field inside the hohlraum, which then compresses the fuel pellet.

Hohlraums for use with ion-driven inertial fusion typically have radiation converters on both

ends. The ion beams are stopped by the converter material and deposit their energy there.

The heated converter material then emits x-rays, which produce the uniform radiation field

inside the hohlraum required to compress the fuel pellet. Indirect drive has the advantage

that spherically uniform compression can be achieved using only a limited number of beams.

In general, direct drive requires a larger number of beams in order to heat the target from

all sides and compress it uniformly.

After compression of the fuel pellet, a rarefaction wave propagates inward at the

sound speed cs. For equal ion and electron temperature T , the sound speed is given by

c2
s =

γ · 2T

mion
, (1.4)

in which γ = 5
3 is the ratio of the heat capacity at constant pressure and at constant volume.

A rarefaction wave that starts at the pellet radius R reaches the radial distance r < R in
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a time (R− r) /cs. Assuming a uniform density, we can average this time span over the

volume of the pellet to find the confinement time:

τc =
1

4
3πR3

∫ R

0
4πr2

(
R− r

cs

)
dr =

R

4cs
. (1.5)

From equations (1.4) and (1.5) we can calculate the burnup fraction given in equation (1.2).

We find

fb =
1

1 + 8cs
n0〈σv〉R

=
1

1 + 8cs·2.5 amu
ρ〈σv〉R

, (1.6)

in which 2.5 amu is the average mass per ion of the DT fuel. At a temperature of 30 keV,

the quantity 8 · (2.5 amu) cs / 〈σv〉 reaches a minimum value of about 70 kg m−2 [86]. At

this temperature, the burnup fraction is

fb =
ρR

ρR + 70 kg m−2 . (1.7)

In order to overcome inefficiencies in other parts of an IFE power plant, a burnup fraction

of about 30% is required. For a yield of 430 MJ, this corresponds to a mass of 4.2 mg of

DT fuel in one pellet. At a ρR of 30 kg m−2, the fuel density is 1.6 · 105 kg m−3, while

the pellet radius after compression is about 180 µm. At a temperature of 30 keV, we find

the confinement time from equations (1.4) and (1.5) to be equal to 35 ps, while the burnup

time can be calculated from equation (1.3) to be about 40 ps.

The density of frozen DT is about 200 kg m−3, so the fuel pellet needs to be

compressed by a factor of almost 1000. If the pellet undergoes ideal spherical compression,

its radius is reduced by a factor of 10. In practice however, due to the occurrence of the

Rayleigh-Taylor and other instabilities, the compression is not perfectly spherical. This

leads to an increase of the surface to volume ratio of the pellet during compression. As a
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result, the need for radial compression is increased to about 20 to 30, corresponding to an

initial pellet radius of 3.6 to 5.4 mm [86].

The energy needed for compression will be minimized if the compression takes

place adiabatically to avoid heating the DT fuel. The hot spot does need to be heated

though, which asks for a careful design of the fuel configuration with different values for ρR

in different parts of the pellet. In addition, we need to be able to shape the driver beam

energy as a function of time in order to optimize compression. In contemporary target

designs based on heavy ion inertial fusion, a beam pulse consisting of a prepulse of 1.5 MJ

and a main pulse of 4.4 MJ is envisioned [20]. Obtaining the optimal pulse shape for an

ion beam or laser pulse will prove to be a difficult task and puts additional requirements

on the accelerator or laser system.

1.3 Heavy Ion Inertial Fusion

In heavy ion inertial fusion, the DT target implosion is driven by a beam of heavy

ions at an energy of a few to several GeV. Heavy ion fusion has several advantages over

laser driven fusion. First, accelerator technology has benefited from decades of engineering

experience from accelerators for high-energy physics experiments, resulting in a high relia-

bility. Accelerators have a long lifetime of the order of decades, and have high efficiencies

of around 30%, as we would need for a fusion power plant. The required repetition rate of

several per second is easily achievable in accelerators, in contrast to high-intensity lasers.

Small focal spots on the target are more easily attainable with lasers than with ion beams

though. Furthermore, it should be realized that the heavy ion accelerators needed for fusion
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applications have a significantly higher beam current than currently existing accelerators.

In particular, we need a better understanding of nonlinear space-charge forces, which are

virtually absent in present low-current accelerators.

In the contemporary target design mentioned above, the prepulse delivers 1.5 MJ

of 3 GeV lead ions, while the main pulse delivers 4.4 MJ of 4 GeV lead ions. The prepulse

and the main pulse can be accelerated in the same accelerator up to an energy of 3 GeV [20].

The prepulse would last almost 30 ns, whereas the pulse duration of the main pulse is about

10 ns. The choice of beam ion depends on its characteristics concerning range and energy

deposition profile in the target material. Lead, cesium and mercury are common candidates.

Nowadays usually single-charged ions are considered because of the increased space-charge

repulsion of higher-charged beam ions.

Whereas radiofrequency linear accelerators (RF linacs) are considered the prime

candidate for heavy-ion inertial fusion in Europe and Japan, in the United States the

focus has been on induction linacs. RF linacs make use of resonant cavities as their basic

accelerating structure. The beam is accelerated by generating RF waves in the cavities at a

phase such the beam ions experience a forward accelerating electric field as they are passing

through. In induction linacs, the beam passes through pulsed toroidal magnets by which a

long pulse accelerating electric field is generated. By ramping the current flowing around

the induction cores, the magnetic flux in the induction cores increases as a function of time.

Following Faraday’s law, we find a longitudinal electric field which accelerates the beam.

The product of acceleration and pulse duration that can be achieved in one induction cell

is limited due to saturation of the magnetic field in the induction core.
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Conventional accelerators transversely confine the beam using electrostatic and

magnetic lenses, while the longitudinal beam velocity is increased in a sequence of acceler-

ating gaps between those lenses. Since the magnetic focusing force qe~v × ~B is proportional

to the ion velocity v, the beam energy has to be sufficiently high for magnetic focusing to

be effective in opposing the space-charge force.

Existing designs for heavy ion accelerators for inertial fusion typically look like

the diagram shown in figure 1.6. After leaving the ion source, the beam is matched into

the accelerator, in which the beam energy is increased to about 100 MeV. In this low-

energy part of the accelerator, the beam is confined with electrostatic focusing. Beyond

this point, magnetic focusing is used. Between the electrostatic section and the magnetic

section, or at some other point in the accelerator, beam merging may be employed to

optimize the accelerator economics. After the magnetic section of the accelerator, the beam

enters the drift compression section, in which it is longitudinally compressed to reduce the

pulse duration to several tens of nanoseconds needed on target. Longitudinal compression

is achieved by accelerating the tail of the beam to a higher velocity than the head. In

the final focus section, the beam is first expanded and then focused onto a spot with a

radius of several millimeters. Since significant beam manipulations take place in the final

focus system, and since the beam current reaches a maximum there due to acceleration and

compression, a proper design of the final focus section is crucial. As the beam enters the

reactor chamber, it may be partially or fully neutralized by passing it through a plasma or

by coinjecting electrons. Neutralization may be needed at a beam energy of several GeV;

for higher beam energies, unneutralized ballistic focusing may be employed. The number of



16

Multiple
beam ion

source and
injector

Acceleration
with electric

focusing

Beam
merging

Acceleration
with magnetic

focusing

Target
chamber

Final
focus
lenses

Drift compression

Figure 1.6: Conceptual diagram of a heavy-ion linear accelerator for IFE [6].

beams hitting the target varies between the existing designs and depends on whether direct

or indirect drive is used.

For a 1.5 MJ prepulse of 3 GeV ions, divided into sixteen beams, the average beam

current will be about one kA per beam for a pulse duration of 30 ns. The average beam

current in the 4.4 MJ main pulse of 4 GeV delivered in 10 ns will be about 3.4 kA when

using 32 beams [20].

1.4 Overview of Conceptual Heavy Ion Drivers and Experi-

ments

Typical power plant reactors produce an electrical power of 800 to 1500 MWe.

Conceptual designs for heavy-ion driven inertial fusion power plants are usually based on

an electrical output of about 1000 MWe. The HIBALL-II and the HYLIFE-II designs to

be discussed here are the two most detailed conceptual fusion plant designs for heavy-ion
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HIBALL-II HYLIFE-II
Number of reactor chamber 4 1
Fusion power (MW) 8000 (2000) 2835
Net electrical output (MW) 3784 (946) 1083
Driver energy (MJ) 5.0 5.0
Target gain 80 70
Fusion yield (MJ) 400 350
Driver efficiency 0.27 0.20
Thermal-to-electrical efficiency 0.42 0.412
Recirculating power fraction 0.12 0.21
Repetition rate (Hz) 20 (5) 8.2

Table 1.1: Plant parameters of the HYBALL-II and HYLIFE-II conceptual power plant
designs [35], [75], [96]. Quantities between parentheses indicate the number per reactor
chamber.

inertial fusion that have been published. Table 1.1 gives an overview of the power plant

parameters for these designs.

1.4.1 HIBALL-II Design

The HIBALL-II design by the Kernforschungszentrum Karlsruhe (Germany) orig-

inated in 1985 in cooperation with the University of Wisconsin [35] and is an improvement

of the original HIBALL design [4]. The driver in this design consists of an RF linac com-

bined with transfer, storage and buncher rings. It operates at a repetition rate of 20 Hz,

driving four reactor chambers at 5 Hz each. In principle, the driver could achieve a higher

repetition rate and drive even more reactor chambers [96].

The driver accelerates Bi+ beams of 1.25 kA each to a kinetic energy of 10 GeV over

a length of 5 km. The final focusing magnets, which are located just outside the reactor

chamber, focus the beams ballistically without neutralization over a standoff distance of

8.5 meters onto a 7 mm diameter spot on the fuel pellets. These pellets are directly driven
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by twenty beams each, giving a yield of 400 MJ at a gain of 83 [96].

The fusion energy is absorbed by the blanket structures and the coolant, which

consists of 83% lead and 17% lithium. The coolant transfers the heat to the heat exchangers

and steam generators for electricity production. The tritium needed for the fusion reactions

is produced in neutron absorption reactions in the lithium present in the coolant:

6Li + n → T +4 He.

In addition to tritium breeding, the coolant serves the purpose of protecting the reactor

chamber against neutron activation.

1.4.2 HYLIFE-II Design

The HYLIFE-II design is a conceptual design for an inertial fusion power plant

driven by heavy-ion beams or high-power lasers [75]. HYLIFE-II focuses mainly on the

reactor chamber design and engineering instead of on the driver. The fuel target though

is designed specifically to be driven by heavy ions such as 200Hg+ at 10 GeV. Figure 1.7

shows the conceptual design of the HYLIFE-II chamber.

The main improvement of HYLIFE-II over the original HYLIFE-I design [11] is

the use of a thick liquid wall of Flibe as a coolant instead of liquid lithium because of its

fire hazard, lower neutron attenuation, and higher vapor pressure. Flibe is a molten salt

composed of LiF and BeF2. In the HYLIFE-II target chamber, arrays of nozzles generate

oscillating jets of liquid Flibe, creating a cavity through which the heavy ion beams pass to

ignite a target in the center of the cavity. As in case of HIBALL-I, the coolant serves the

additional purposes of tritium breeding and neutron shielding of chamber structures.
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Figure 1.7: The HYLIFE-II chamber.

1.4.3 Small and Intermediate Scale Experiments

The Scaled Final Focus Experiment

In the Scaled Final Focus Experiment at LBNL [68], [69], the beam dynamics of the

HIBALL-II final focus system are replicated on a small scale. All spatial dimensions were

reduced by a factor of ten, while the other beam parameters were scaled appropriately. The

Scaled Final Focus Experiment uses a Cs+ ion beam accelerated to an energy of 160 keV.

The focusing lattice consists of a 2.2 meter section of fifteen electrostatic quadru-

poles, followed by a drift space, and six magnetic quadrupoles. The drift space between

the third and fourth magnet was reduced with respect to the HIBALL-II design, since

its bending magnets, which are needed for the neutron dump, were not included in the

small-scale experiment.
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Figure 1.8: The Scaled Final Focus Experiment.

Upon exit from the diode, the Cs+ beam has a current of several mA and is

transported through the first five electrostatic quadrupoles to an aperture plate. The beam

passes through a hole several millimeters wide in the aperture plate to reduce the current

to a value typically between 80 and 400 µA, depending on the size of the aperture hole.

After the aperture, the second set of five electrostatic quadrupoles match the beam to the

beam radius and convergence angle required for the actual final focus section, which consists

of the six magnetostatic quadrupoles. The last five electrostatic quadrupoles, before the

magnetic section, were kept at zero field in the experiment.

Figure 1.8 shows a schematic of the Scaled Final Focus Experiment. The upper

part of the figure is a drawing to scale of the beam lattice showing the electric and magnetic

quadrupoles, whereas the lower part shows the horizontal and vertical beam radius. The

location of the diagnostic probes, which are used to measure the phase-space properties of

the beam, are represented by the dashed lines. The dashed vertical line after the fifth elec-

trostatic quadrupole represents the location of the aperture. Since the last five electrostatic
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quadrupoles were usually set to ground during the experiments, they are not drawn on the

lower part of figure 1.8.

The High Current Experiment (HCX)

The High Current Experiment (HCX) will be the first beam transport experiment

in which the beam has a duration and line charge density that correspond to driver-scale

values [87]. The HCX will consist of a single low-energy (1.6 – 2 MeV) K+ beam with a

long pulse duration (∼ 5 – 20 µs), focused using electrostatic and magnetic quadrupoles.

In the HCX, important beam physics issues such as preservation of beam quality, beam

sensing and alignment, halo production, and secondary electron effects will be addressed

for high-intensity beams. In particular, the aperture fill factor as defined as the ratio of

the beam radius to the pipe radius will be studied. The HCX is aimed to provide a sound

knowledge basis to proceed with the IRE, discussed below.

The Integrated Research Experiment (IRE)

The Integrated Research Experiment (IRE) is envisioned to be the next major

step in the US inertial fusion energy program [7]. In the IRE, beam dynamics issues will

be studied such as emittance growth, halo formation, pulse compression, beam loading (the

effect of the beam on the accelerator circuitry) and the use of multiple beams, as well as

chamber transport and final focus systems including neutralization, beam stability, and

stripping and photoionization issues. Furthermore the IRE can be used to examine ion

beam interaction with targets, such as volumetric heating of matter (which is unique to

energy deposition by ion beams in comparison to laser beams) and ion stopping power in
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dense plasmas. The objective of the IRE is to provide the scientific and technological basis

to proceed to design and build an Engineering Test Facility (ETF) for inertial fusion.

Current preliminary designs for an IRE are based on realizing these goals [7]. The

target temperature that can be achieved when the beams hit the target depends on the

beam energy, the beam current, the final pulse duration and the spot size on target. To

make meaningful final focus experiments possible, the ion energy should be greater than

about 100 MeV. The total current at the end of the IRE accelerator should be larger than

about 100 A for beam loading to have similar effects as in a driver. This large total current

will require the use of tens of beams. In addition, the parameters of the IRE should be

such that it can serve as a stepping stone between small-scale experiments (1 A beams at

a few MeV) and an ETF (100 A beams at a few GeV). The exact parameters of the IRE

will result from a better knowledge of its requirements.

Preliminary designs for the IRE have been made and form the basis of some of the

simulation results presented in this thesis. The beam parameters for the current conceptual

IRE design are listed in table 1.2, together with the corresponding values for a typical

power-plant scale driver [74]. In order to be able to focus the beams onto a small spot,

neutralizing the beam with a neutralization fraction of 90% or higher is required. The IRE

parameters given in table 1.2 will yield a target temperature of about 43 eV if the beams

is focused onto a spot with a 5 mm radius [7].

In current designs, the IRE is envisioned to consist of an injector and matching

section of six meters, an electrostatically focused accelerator of 50 meters followed by a

magnetically focused accelerator of 205 meters, a drift compression section of 60 meters



23

IRE Power plant
Number of beams 32 140
Charge per beam 4.6875 µC 32.33 µC
Current per beam at the
end of the accelerator

15.3 A 157 A

Final kinetic
energy

200 MeV
1.1 GeV prepulse;
1.4 GeV main pulse

Normalized emittance < 5 mm mrad 0.8 mm mrad

Momentum spread < 1%
0.43% prepulse;
1.3% main pulse

Pulse duration
at the end of the accelerator

335 ns 205 ns

Pulse duration
after compression

5 ns – 20 ns
30 ns prepulse;
8 ns main pulse

Table 1.2: Beam parameters for the preliminary IRE design, and for a typical power plant
based on Heavy Ion Inertial Fusion.

in which the beam is compressed longitudinally, and a target chamber. The magnetically

focused accelerator consists of two sections. In the first section, the beam undergoes longi-

tudinal bunch compression, whereas in the second section the bunch length is held constant

and the acceleration gradient is at its maximum value. Table 1.3 gives an overview of the

beam parameters in the various parts of the accelerator.

The conceptual design for the IRE is currently in its preliminary stage, and will

require further validation and optimization. A number of computer simulations of the IRE

have been carried out so far to examine its viability [21], [32], [59].

1.5 Purpose of Thesis

Focusing a high-current ion beam onto a small spot on the target is a difficult task,

requiring significant beam manipulations by the final focus system. Under these extreme

conditions, any imperfections present in the system may severely affect the beam quality.
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Bunch
length

Lattice
half period

Beam
current

Occu-
pancy

Accelerating
gradient

Focusing
gradient

T = 1.6 MeV 18.8 m 0.21 m 0.77 A 0.65 55 kV/m 140 MV/m2

Electrostatic
focusing

constant ∝ T
1
2 ∝ T

1
2 0.65 ∝ T 140 MV/m2

T = 9.4 MeV 18.8 m 0.5 m 1.87 A jump 323 kV/m jump
Magnetostatic
focusing with
compression

∝ T−
1
2 ∝ T

1
4 ∝ T 0.33 ∝ T 37 T/m

T = 29.8 MeV 10.6 m 0.67 m 5.9 A 0.33 1000 kV/m 37 T/m
Magnetostatic
focusing, no
compression

constant ∝ T
1
2 ∝ T

1
2 ∝ T−

1
2 constant

slow
variation

T = 200 MeV 10.6 m 1.73 m 15.3 A 0.127 1000 kV/m 34.1 T/m

Table 1.3: Beam parameters of the preliminary IRE design at different locations along the
accelerator.

Early design considerations for final focus systems were presented at the first

summer study of heavy ion inertial fusion, held at the Claremont Hotel in Berkeley in 1976

[37], [45]. These papers considered idealized focusing system only, and space-charge effects

were either ignored or treated in a rudimentary way.

At the Heavy Ion Fusion Workshop held in 1977 at Brookhaven National Labora-

tory, nonideal effects such as geometric and chromatic aberrations were studied, as well as

methods to correct these using sextupole and octupole magnets [15], [18], [44]. Aberrations

were treated perturbatively, and nonlinear space-charge effects were ignored.

David Neuffer considered geometric aberrations more generally for the case of

zero-current beams in a paper at the Heavy Ion Fusion Workshop held in 1978 at Argonne

National Laboratory [77], offering some constraints on heavy ion fusion parameters. Sex-

tupoles and octupoles may be used in the final focus system to compensate for geometric

as well as chromatic aberrations [22], [77]. More generally, octupoles can be used to correct
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for geometric and fringe field aberrations simultaneously [48]. The increase in spot size due

to chromatic aberrations may be harder to correct with higher-order multipoles [92].

At the Heavy Ion Fusion Workshop at the Claremont Hotel in Berkeley in 1979, a

conceptual final focus beam line for a zero-current beam of 10 GeV U4+ was presented, in

which the chromatic aberrations are nullified to second order [14]. Third order geometric

aberrations were studied for the same beam line by Eugene Colton [23]. The effect of the

geometric aberrations was found to be negligible. This beam line, without the sextupole

corrections, was then modified to take space charge of the beam into account [36]. The

space charge was assumed to be uniformly distributed in configuration space, so that the

resulting defocusing force was proportional to the distance from the beam centroid. It was

shown though that space-charge nonuniformities can severely affect the beam dynamics

[64]. Irving Haber presented the first numerical simulations of space-charge aberrations in

final focus systems, using a simple idealized final focusing system [43]. These simulations

indicated that space-charge nonlinearities can significantly increase the final spot size, and

it was concluded that any extensive final focus design should be accompanied by a program

of numerical simulations.

This beamline was subsequently modified to reduce the effects of the space-charge

nonlinearities, ignoring the problem of chromatic aberrations [60]. One of the goals of the

new design was to eliminate the narrow waists in the beam envelopes before the final focus

that existed in the previous design, which seemed to be sensitive to disturbances. The spot

size doubled due to the presence of space-charge nonlinearities, which was an improvement

over the nine-fold increase in previous designs.
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In the HIBALL-II design, a final focus system is presented for a beam of 10 GeV

Bi+ ions [35]. Again beam waists are avoided because of the strong space charge of the

beam. Instead, a long drift section is used to widen the beam. The beam line is bent

to avoid backstreaming neutrons to hit the magnets and cause activation problems, using

an achromatic design with two consecutive bending magnets to compensate for dispersion.

Calculations of third order geometric aberrations were performed, which included the linear

space-charge effect on the particle orbits but not the nonlinear effects due to space-charge

nonuniformities. The final focus system was optimized to be free of second and higher order

geometric aberrations, but it does have a second order chromatic aberration. Particular

attention was given to neutron shielding of the final focus magnets.

An assessment of final focus systems was made in 1987 [12]. In addition, the

requirements for a drift compression section upstream of the final focus system were consid-

ered. At the end of the accelerator, the beam has a pulse duration of about 100 to 400 ns.

The pulse duration is reduced to about 5 to 20 ns by putting a head-to-tail longitudinal

velocity tilt on the beam and let it compress in a drift line. The longitudinal space-charge

force will reduce the velocity tilt. The aim is to reduce the velocity tilt to zero by the

time the beam passes through the final focus system to avoid chromatic aberrations. The

velocity tilt may be partly converted into a final momentum spread, which can cause severe

chromatic aberrations.

Even if the velocity tilt can be reduced to zero by the time the beam reaches the

center of the final focus section, usually the final focus system is long enough for an appre-

ciable velocity tilt to exist both before and after the midpoint. The resulting achromatism
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can be reduced by appropriately using symmetry in the design of the final focus system

with respect to its longitudinal midpoint [46].

As supercomputers became more powerful in recent years, more comprehensive

simulations of final focus systems are now possible. In particular, the effect of nonlinear

space-charge forces in final focus can now be studied more accurately. Also, more compre-

hensive studies of nonlinear beam dynamics can be performed, in which the main nonideal

effects likely to be present in reality can be included in the simulation. Finally, due to the

increase in computing power, simulation methods other than particle-in-cell codes, such as

Vlasov codes, can be used to validate the simulation results.

This thesis is aimed at gaining a better understanding of drift compression systems

and final focus systems for high-current beams, such as those needed for heavy ion inertial

fusion. Several drift compression system were designed for the IRE using a new computer

code, based on a longitudinal fluid model combined with a transverse envelope model, to

accurately calculate the longitudinal electric field. Previous designs of drift compression sys-

tems relied on the g-factor model, which is insufficiently accurate for high-intensity beams.

For the drift compression designs presented in this thesis, particular attention was given

to the coupling between longitudinal and transverse dynamics. As the beam compresses, a

rapidly increasing current near the beam ends may result in mismatches. These mismatches

are undesirable, as they may lead to emittance growth and halo formation. Mismatches pro-

duced by longitudinal bunch compression have not been studied sufficiently in the past.

In final focus systems, a beam is usually expanded transversely before it is focused

onto a spot. Third-order aberrations due to this expansion may affect the beam quality and
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thereby the achievable spot size. While in the absence of aberrations a smaller spot size can

be realized by focusing the beam onto the target using a large convergence angle, the third-

order aberrations become more severe if the convergence angle is increased. An improvement

in the achievable spot size may be obtained by rematching the final focus quadrupoles,

which would alleviate the need for additional elements in the final focus system to correct

the aberrations. Chapter 5 describes the results of final focus rematching for different values

of the convergence angle.

Detailed simulations were made of the Scaled Final Focus Experiment at Lawrence

Berkeley National Laboratory. Simulations can be used to assess which nonideal effects in

the experiment are likely to significantly affect the beam dynamics. In the simulations of

the Scaled Final Focus Experiment, the experimental conditions were replicated accurately,

particularly with regards to the presence of conducting surfaces in the experiment. This

allows meaningful comparisons between the simulation and the experimental results. In

addition, the cause of the beam rotation measured in the experiment was analyzed using a

linear model to describe beam and quadrupole rotations.
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Chapter 2

Charged Particle Beam Dynamics

2.1 Beam Dynamics in the Zero-Current Limit

Consider a beam of particles with charge qe and rest mass m propagating in the

positive z-direction. The transverse equations of motion are

d~p⊥
dt

= qe
(

~E + ~v × ~B
)
⊥

, (2.1)

d~r⊥
dt

=
~p⊥
mγ

, (2.2)

in which ~E and ~B are the electric and magnetic field, ~v ≡ ~βc is the velocity, γ ≡ (
1− β2

)−1/2

is the relativistic factor, and ~r⊥ and ~p⊥ are the position and momentum transverse to ẑ. In

the absence of acceleration, we can write this as

d2~r⊥
dt2

=
qe

mγ

(
~E + ~v × ~B

)
⊥

. (2.3)

The electromagnetic field acting on a particle consists of an externally applied focusing

field and the collective beam-particle interaction due to the space-charge repulsion. We
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ignore the latter in the zero-current limit. Since the focusing fields are a function of the

longitudinal dimension z, it is convenient to express the transverse motion of the particle

as a function of z instead of time. Using

d
dt

= βzc
d
dz

, (2.4)

we find

~r ′′⊥ =
qe

mγβ2
zc2

(
~E + ~v × ~B

)
⊥

, (2.5)

in which the prime denotes differentiation with respect to z.

If the transverse velocity is much smaller than the forward velocity, we can apply

the paraxial approximation, in which the transverse motion effectively decouples from the

longitudinal motion [66]. The paraxial approximation is valid if the focal lengths of external

elements are long compared with the beam radius, and the total current I is small compared

with the vacuum Alfvén current IA:

I ¿ IA =
4πε0m (βγc)3

qe
. (2.6)

In the case of a 2.5 kA beam of Cs+ ions at a velocity β ≈ 1/3, which are typical param-

eters for a heavy-ion inertial fusion driver, the Alfvén current is 183 MA. So the paraxial

approximation will be quite good in the present case. In this approximation, we can replace

βzc by the total speed βc. The equation of motion then becomes

~r ′′⊥ =
qe

mγβ2c2

(
~E⊥ + βcẑ × ~B

)
. (2.7)

If we include acceleration, this equation becomes

~r ′′⊥ +
(βγ)′

βγ
~r ′⊥ =

qe

mγβ2c2

(
~E⊥ + βcẑ × ~B

)
. (2.8)
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Next, we consider the transverse focusing fields. An electrostatic or magnetostatic

field in a source-free region can be expanded in terms of its multipole components [42]:

Er = −
∞∑

ν=0

1
2(ν + 1)

de0,ν(z)
dz

r2ν+1

+
∞∑

n=1

∞∑

ν=0

en,ν(z)
(

1 +
2ν

n

)
rn−1+2ν cos [n(θ + φn)] , (2.9)

Eθ = −
∞∑

n=1

∞∑

ν=0

en,ν(z)rn−1+2ν sin [n(θ + φn)] , (2.10)

Ez =
∞∑

ν=0

e0,ν(z)r2ν +
∞∑

n=1

∞∑

ν=0

1
n

den,ν(z)
dz

rn+2ν cos [n(θ + φn)] . (2.11)

The magnetic field can be decomposed similarly:

Br = −
∞∑

ν=0

1
2(ν + 1)

db0,ν(z)
dz

r2ν+1

+
∞∑

n=1

∞∑

ν=0

bn,ν(z)
(

1 +
2ν

n

)
rn−1+2ν sin [n(θ + φn)] , (2.12)

Bθ =
∞∑

n=1

∞∑

ν=0

bn,ν(z)rn−1+2ν cos [n(θ + φn)] , (2.13)

Bz =
∞∑

ν=0

b0,ν(z)r2ν +
∞∑

n=1

∞∑

ν=0

1
n

dbn,ν(z)
dz

rn+2ν sin [n(θ + φn)] . (2.14)

For these fields to obey Maxwell’s equations, the multipole components en,ν need to satisfy

the recursion relation:

en,ν+1(z) = − 1
4(ν + 1)(n + ν + 1)

d2en,ν(z)
dz2

, (2.15)

due to Faraday’s law for static fields ~∇× ~E = 0, and similarly for the magnetic multipole

components bn,ν(z) due to Ampère’s law for static fields ~∇× ~B = 0 in a source-free region.

Multipole components with different n are independent of each other.

Alternating-gradient accelerators rely on electrostatic or magnetic quadrupoles

(n = 2, ν = 0) to focus the beam. The transverse electrostatic quadrupole field is given in
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terms of the Cartesian coordinates x = r cos θ, y = r sin θ as

~E⊥ = e2,0(z)r
[
r̂ cos (2 (θ − φ2))− θ̂ sin (2 (θ − φ2))

]
(2.16)

= GE (z) (x̂x− ŷy) + SE (z) (x̂y + ŷx) , (2.17)

in which GE ≡ e2,0(z) cos (2φ2) and SE ≡ e2,0(z) sin (2φ2). The second term in this equation

represents a skew quadrupole, which couples the horizontal (x) and vertical (y) motion.

For this reason, skew quadrupoles are generally avoided in the design of accelerators. For

positive field gradient GE , the first term in equation (2.17) gives a focusing force in the

horizontal (x) direction and a defocusing force in the vertical (y) direction:

x′′ = − qe

mγβ2c2
GEx,

y′′ = +
qe

mγβ2c2
GEy. (2.18)

For magnetostatic fields, we find similarly

~B⊥ = b2,0(z)r
[
r̂ sin (2 (θ − φ2)) + θ̂ cos (2 (θ − φ2))

]
(2.19)

= GB (z) (x̂y + ŷx) + SB (z) (x̂x− ŷy) , (2.20)

in which GB (z) ≡ b2,0(z) cos (2φ2) and SB (z) ≡ b2,0(z) sin (2φ2). Again the term propor-

tional to SB (z) represents a skew quadrupole. For positive field gradient GB, the first term

in equation (2.20) gives a defocusing force in the horizontal (x) direction and a focusing

force in the vertical (y) direction:

x′′ = +
qe

mγβc
GBx,

y′′ = − qe

mγβc
GBy. (2.21)
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We can then write the equation of motion of a single charged particle as

x′′ + kx(z)x = 0, (2.22)

y′′ + ky(z)y = 0, (2.23)

in which k•(z) is determined by the electrostatic and magnetostatic quadrupole fields de-

scribed above. Usually in a transport section, k•(z) has zero average and is periodic with

period 2L, in which L is the lattice half period. In this thesis, a lattice half period is defined

as a distance L containing one quadrupole centered around 1
2L. This definition is convenient

in the design of a drift compression system as described in chapter 4. In transport lattices

though, doublets are commonly used, in which quadrupoles are not centered around 1
2L.

A beam particle in a transverse focusing force as in described by equations (2.22),

(2.23) experiences an alternating sequence of focusing and defocusing forces. Since the

particle orbits in such an alternating-gradient lattice deviate farther from the axis in focusing

lenses than in defocusing lenses, the particles experience a focusing force on average.

The z-dependence of the quadrupole field results in non-zero second derivatives in

the recursion equation (2.15), in particular near the ends of the focusing elements. This

gives rise to higher-order multipoles (called pseudo-multipoles) in the fringe fields of focusing

elements. We will ignore this effect for now, but we will consider it in section 2.4.1.

2.2 Beam Dynamics in the Presence of Space Charge

In the zero-current limit, all particles in the beam move independently of each

other. To self-consistently include the beam self-repulsion due to its space charge, we need

to consider the evolution of the beam distribution in the transverse x, x′, y, y′ phase space.
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The Kapchinskij-Vladimirskij (K-V) distribution is the only repeating distribu-

tion presently known that self-consistently describes beam propagation in an alternating-

gradient focusing lattice [55]. Mathematically, the K-V distribution is described by a delta-

function in four-dimensional transverse phase space:

f(x, x′, y, y′) =
N

πεx · πεy
δ

[
a2

ε2
x

(
x′ − x

a′

a

)2

+
x2

a2
+

b2

ε2
y

(
y′ − y

b′

b

)2

+
y2

b2
− 1

]
, (2.24)

in which N is the number of particles per unit length along the beam. Note that in this

expression, the parameters a, a′, b, and b′ depend on the longitudinal coordinate z.

To explain the parameters appearing in this expression, we will calculate several

moments of the K-V distribution. First we integrate equation (2.24) over the primed vari-

ables. This yields the particle distribution in transverse configuration space

n (x, y) =
∫

f(x, x′, y, y′)dx′dy′ =
N

πab
θ

(
1− x2

a2
− y2

b2

)
, (2.25)

in which θ is the Heaviside step function. This represents a uniform distribution over an

ellipse with semi-axes a and b. From this equation, we find

a2 = 4
〈
x2

〉
, (2.26)

b2 = 4
〈
y2

〉
, (2.27)

in which the average 〈·〉 is defined by

〈
g

(
x, x′, y, y′

)〉 ≡ 1
N

∫
f

(
x, x′, y, y′

)
g

(
x, x′, y, y′

)
dxdx′dydy′. (2.28)

Taking the derivative with respect to z of equations (2.26) and (2.27) and evaluating the

resulting moments using (2.28) yields

a
da

dz
= 4

〈
xx′

〉
= aa′, (2.29)
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b
db

dz
= 4

〈
yy′

〉
= bb′. (2.30)

So we found that a′ = da
dz and b′ = db

dz .

The space-charge field inside an ellipse with a uniform space-charge distribution

is given by

~E =
λ

πε0

1
a + b

(
xx̂

a
+

yŷ

b

)
, (2.31)

~B =
µ0λ

π
βc

1
a + b

(
−x̂

y

b
+ ŷ

x

a

)
, (2.32)

in which λ is the line charge density of the beam [62]. Substituting these fields into equation

(2.7) yields

x′′ =
qe

m

2I

4πε0 (βγc)3
2

a + b

x

a
, (2.33)

in which I = λβc is the beam current. Perveance is defined as a dimensionless measure of

the magnitude of the space-charge repulsion:

Q ≡ qe

m

2I

4πε0(βγc)3
=

2I

IA
. (2.34)

The perveance is typically between 10−5 and 10−3 in the final focus section of a driver for

heavy ion inertial fusion.

For the full equation of motion in the transverse direction, we need to combine

the space-charge repulsion and the external focusing force. We find from equations (2.22)

and (2.33):

x′′ + kx(z)x =
2Q

(a + b)
x

a
, (2.35)

and similarly in the y-direction

y′′ + ky(z)y =
2Q

(a + b)
y

b
. (2.36)
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To find the envelope equation, which describes the evolution of the beam radii as

a function of z, we take the derivative of equation (2.29) with respect to z:

a′ 2 + aa′′ = 4
〈
x′ 2

〉
+ 4

〈
xx′′

〉
. (2.37)

In this equation, we can substitute a′ from equation (2.29):

a′′ =
4

〈
x′ 2

〉
+ 4 〈xx′′〉
a

− 16〈xx′〉2
a3

. (2.38)

Next we substitute x′′ from equation (2.35) and then
〈
x2

〉
from equation (2.26) to find

a′′ + kx(z)a = 16

〈
x′ 2

〉 〈
x2

〉− 〈xx′〉2
a3

+
2Q

a + b
. (2.39)

The numerator of the first term on the right-hand-side can be calculated from the

K-V distribution (2.24). We find

16
(〈

x2
〉 〈

x′ 2
〉− 〈

xx′
〉2

)
= ε2

x. (2.40)

To understand the physical significance of εx, we integrate the K-V distribution over y and

y′. This yields

∫
f(x, x′, y, y′)dydy′ =

N

πεx
θ

(
1− x2

a2
− a2

ε2
x

(
x′ − x

a′

a

)2
)

. (2.41)

This represents a uniformly filled ellipse in x, x′ phase space with area πεx. As a and a′

evolve during propagation in an alternating-gradient focusing channel, the ellipse changes

its ellipticity and rotates in x, x′ phase space.

The emittance of a beam is defined as the area, in units of π, of an ellipse in

phase space enclosing the area occupied by the beam. In the horizontal direction, it is

therefore equal to εx in the expression for a K-V distribution (2.24). The emittance in
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terms of second-order moments over the beam distribution (2.40) is often referred to as the

4 × RMS emittance, or as the edge emittance. For a K-V beam, these two definitions for

the emittance are equivalent.

We can demonstrate that the emittance of a coasting K-V beam is preserved by

calculating the derivative with respect to z of the 4× RMS emittance:

(
ε2
x

)′ = 32
(〈

x′x′′
〉 〈

x2
〉− 〈

xx′′
〉 〈

xx′
〉)

. (2.42)

Substituting x′′ from equation (2.35) now gives

(
ε2
x

)′ = 32
(
−kx(z) +

2Q

(a + b)a

)(〈
x′x

〉 〈
x2

〉− 〈
x2

〉 〈
xx′

〉)
= 0. (2.43)

Note that linearity of the transverse force is required for
(
ε2
x

)′ to vanish. Field nonlinearities

may lead to phase space filamentation and dilution, and therefore to a larger effective

emittance [27]. While the 4 × RMS emittance may increase in the presence of nonlinear

fields, the true area in phase space actually occupied by the beam is conserved, as required

by Liouville’s theorem [38]. In the presence of acceleration, the normalized emittance βγεx

is conserved in linear systems instead of the unnormalized emittance εx.

In terms of the emittance, the envelope equation can now be written as

a′′ + kx(z)a =
ε2
x

a3
+

2Q

a + b
. (2.44)

For the y-direction we find a similar equation:

b′′ + ky(z)b =
ε2
y

b3
+

2Q

a + b
. (2.45)

Note that these equations are coupled through their dependence on the perveance Q.
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Now we can show that the K-V distribution satisfies the transverse Vlasov equation

df

dz
=

∂f

∂z
+

∂f

∂x
x′ +

∂f

∂x′
x′′ +

∂f

∂y
y′ +

∂f

∂y′
y′′ = 0. (2.46)

Consider the Courant-Snyder invariants

Ix ≡ a2

ε2
x

(
x′ − x

a′

a

)2

+
x2

a2
, (2.47)

Iy ≡ b2

ε2
y

(
y′ − y

b′

b

)2

+
y2

b2
, (2.48)

which are conserved along particle orbits:

I ′x = 2
(

a2

ε2
x

(
ax′′ − a′′x

)
+

x

a

) (
ax′ − a′x

a2

)
= 0, (2.49)

upon substitution of equations (2.35) and (2.44), and similarly for Iy. Since the K-V

distribution can then by written as f(x, x′, y, y′) = N
πεx·πεy

δ [Ix + Iy − 1], it follows from

Jeans’ theorem that the K-V distribution solves the Vlasov equation [56], [78].

The K-V distribution is of importance in the theory of beam dynamics as an ideal

case, in which the space-charge field is guaranteed to be linear. Due to the highly singular

nature of a delta-function in four-dimensional phase space, a K-V distribution cannot be

expected to accurately reflect the distribution of real beams. In addition, it can be shown

that the K-V distribution is unstable [91]. The equations (2.26), (2.27), (2.29), (2.30),

and (2.40) are strictly speaking only valid for the K-V distribution. Nevertheless, they are

commonly used in experiments and simulations to evaluate the beam parameters a, b, a′,

b′ and the emittance in terms of moments over the beam distribution.

In simulations, instead of a K-V distribution often a semi-Gaussian distribution is

used as the initial particle distribution. This distribution is characterized by a uniformly
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filled ellipse in configuration space, while the velocities x′, y′ have a Maxwellian distribution.

We can write this distribution as

f
(
x, x′, y, y′

)
=

4
π

θ

(
1− x2

a2
− y2

b2

)
1

2πεxεy

exp

[
−1

2

(
2a

εx

)2 (
x′ − x

a
a′

)2
− 1

2

(
2b

εy

)2 (
y′ − y

b
b′

)2
]

. (2.50)

Unlike the K-V distribution, a semi-Gaussian beam does not remain semi-Gaussian as it

propagates in an alternating-gradient lattice.

2.3 Beam Dynamics in the Smooth Approximation

The equation of motion for a single particle (2.35), (2.36) in a focusing lattice has

a cosine-like (x′(z = 0) = 0) and a sine-like (x(z = 0) = 0) trajectory as its two independent

solutions. Each of these trajectories consist of a fast oscillation at a frequency corresponding

to the period of the focusing lattice, as well as a slower oscillation extending over several

lattice periods. Usually we are mostly interested in this smooth, slower oscillatory behavior

of the particle, which is called the betatron oscillation [27]. Effectively, this means that

we approximate the cosine- and sine-like trajectories as cosines and sines, which follow the

smooth equation of motion

x′′0(z) +
( σ0

2L

)2
x0(z) = 0, (2.51)

in which x0(z) represents the smooth orbit of the particle and σ0 is the (undepressed) tune

or the phase advance per period. The undepressed tune can be calculated exactly from the

properties of the focusing lattice using the transfer matrix approach [27].
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In the presence of space charge, the smooth equation of motion becomes

x′′0 +
( σ0

2L

)2
x0 =

2Q

(a0 + b0)a0
x0, (2.52)

y′′0 +
( σ0

2L

)2
y0 =

2Q

(a0 + b0)b0
y0, (2.53)

in which a0(z) and b0(z) are the smooth beam envelopes given by

a′′0 +
( σ0

2L

)2
a0 =

ε2
x

a3
0

+
2Q

a0 + b0
, (2.54)

b′′0 +
( σ0

2L

)2
b0 =

ε2
y

b3
0

+
2Q

a0 + b0
. (2.55)

From the smooth envelope equations, we can find an expression for the average beam radius:

( σ0

2L

)2
R =

ε2

R3
+

Q

R
(2.56)

Defining the depressed tune σ by

( σ

2L

)2
≡

( σ0

2L

)2
− Q

R2
(2.57)

we can rewrite this as
( σ

2L

)2
R =

ε2

R3
(2.58)

We define the betatron tune depression [82] as the ratio σ/σ0.

The envelope equation for a round beam after the last final focus magnet, con-

verging onto a spot on the target is given by

R′′ =
Q

R
+

ε2

R3
. (2.59)

When the beam approaches the target, the beam radius is small and the emittance term

dominates over the perveance term. So although for space-charge dominated beams the

emittance is negligible in most of the accelerator, the magnitude of the emittance determines

the achievable spot size.
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2.3.1 Approximate Envelope Relations

Some approximate relations can be derived between the depressed and undepressed

tune, and the lattice and beam properties, by employing expansions in kL2, in which k is

the focusing strength of the quadrupole and L is the lattice half period [67]. We will make

extensive use of two of these relations when designing the IRE drift compression and final

focus systems. The first equation relates the average beam radius ā to the perveance Q,

the lattice half period L, and the depressed and undepressed tunes σ and σ0:

Q

(
2L

ā

)2

≈ 2 (cosσ − cosσ0) . (2.60)

Since the depressed tune σ is small for space-charge dominated beams, usually we can set

cosσ = 1 in this equation.

The occupancy η of a lattice half period is defined as the fraction of its length that

is occupied by the quadrupole. For a transverse focusing lattice with flat-top quadrupole

fields, we can find the undepressed tune from

cosσ0 ≈ 1− 1
2

(
ηkL2

)2
(

1− 2
3
η

)
. (2.61)

These equations typically have an accuracy of 1% or better.

2.4 Nonlinear Effects

In this section, some of the nonideal effects that are present in actual accelerators

are described. Nonlinear forces acting on a beam tend to increase its RMS emittance and

thereby the achievable spot size. They can often only be studied perturbatively or with the
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aid of computer simulations. Some of the nonlinear effects mentioned here can be mitigated

by appropriately designing the accelerator.

2.4.1 Third Order Aberrations

Geometric Aberrations

In our derivation of the single particle equation of motion (2.22), we made use

of the paraxial approximation, in which the transverse particle velocity is ordered small in

comparison to the longitudinal velocity. When the transverse velocity is taken into account,

third-order nonlinear terms appear in the equation of motion.

We start from the equation of motion (2.3) for a single particle with time as

the independent variable. In the presence of magnetic fields only, the magnitude of the

momentum of each particle is conserved:

d
dt

(mγv) = 0. (2.62)

We can write the velocity v in terms of the longitudinal velocity vz as

v = vz

√
1 + x′2 + y′2 (2.63)

From this we find that

d2

dt2
= vz

d
dz

vz
d
dz

(2.64)

=
(βc)2

1− x′2 − y′2

(
d2

dz2
− x′x′′ + y′y′′

1− x′2 − y′2
d
dz

)
(2.65)

Substituting this into the equation of motion (2.3), we find two coupled nonlinear differential

equations:

(
1 + y′2

)
x′′ − x′y′y′′ =

qe

mγβc

(
1 + x′2 + y′2

)3/2 (−By + Bzy
′) (2.66)
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(
1 + x′2

)
y′′ − x′y′x′′ =

qe

mγβc

(
1 + x′2 + y′2

)3/2 (
Bx −Bzx

′) (2.67)

These equations reduce to the linear equation of motion (2.7) in the paraxial approximation,

in which we use x′ ¿ 1, y′ ¿ 1. The nonlinear terms in this equation may cause an

emittance increase by distorting the occupied transverse phase space and thereby adversely

affecting the beam quality.

Simulation codes such as WARP typically solve the 3d equation of motion as a

function of time instead of longitudinal distance. Even in 2d transverse slice calculations,

in which all particles are assumed to be at the same longitudinal position at a given time

step, the position and velocity of each particle is calculated in all three directions. The

geometric aberrations are then included automatically via a changing longitudinal velocity

vz, instead of explicit terms in the transverse equation of motion.

Fringe Fields

The fringe fields near the ends of the focusing elements also generate third-order

aberrations, arising from the longitudinal variation of the quadrupolar field. We will discuss

the effects of fringe fields in case of magnetic quadrupole focusing; the case of electrostatic

focusing can be treated analogously.

The term proportional to b2,0(z) in the multipole expansion of the applied magnetic

field corresponds to the quadrupolar focusing field GB(z) = b2,0(z) cos (2φ2) that appears

in the equation of motion (2.21). From equation (2.14), there will be a longitudinal field

due to the non-zero z-derivative of GB(z), which will affect the transverse motion of the
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beam ions. This field is given by

Bz =
1
2

db2,0 (z)
dz

r2 sin (2θ) (2.68)

= G′
B (z) xy. (2.69)

In addition, according to the recursion relation (2.15), the z-dependence of b2,0(z) will

generate an infinite number of higher-order multipoles in the transverse magnetic field. In

the absence of skew quadrupoles, the pseudo-octupole is the first higher-order multipole

that appears. Its transverse magnetic field is given by

~B⊥ = b2,1(z)r3
(
2 sin (2θ) r̂ + cos (2θ) θ̂

)

= − 1
12

G′′
B(z)

(
x̂

(
3x2y + y3

)
+ ŷ

(
3xy2 + x3

))
, (2.70)

in which b2,1(z) = − 1
12G′′

B(z), where GB(z) is the field gradient of the quadrupole field,

follows from the recursion relation (2.15).

If we take these fields into account, third-order terms appear in the equation of

motion (2.22), (2.23):

x′′ = −GB(z)x + G′
B(z)xyy′ + G′′

B(z)
(

xy2

4
+

x3

12

)
, (2.71)

y′′ = +GB(z)y −G′
B(z)xyx′ −G′′

B(z)
(

x2y

4
+

y3

12

)
, (2.72)

in addition to the third-order terms due to the geometric aberrations given in equations

(2.66), (2.67). A general treatment of third-order aberrations of quadrupole magnet lattices

has been given by Meads [73].

To calculate the longitudinal field and the higher-order multipoles, the shape of the

fringe field and all its derivatives need to be known. Since a multipole of order n generates
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Figure 2.1: The quadrupole field gradient G(z) as a function of distance z in the fringe field
of a quadrupole if the fringe field is described by equation (2.73). The length of the fringe
field is Lf.

terms of order (rbeam/rpipe)
n−1 in the equation of motion, usually only the lowest multipoles

are taken into account. The shape of the fringe field can be approximated by some smooth

function such as

G(z) = G0
1
2

[
1 + tanh

(
tan

(
πz

Lf

))]
, (2.73)

in which G0 is the quadrupole field gradient in the center of the quadrupole, outside of the

fringe field region, and Lf is the length of the fringe field. This function has the property

that all its derivatives vanish at z = ±1
2Lf. It is plotted in figure 2.1.



46

2.4.2 Chromatic Aberrations

So far, we assumed that all beam ions have exactly the same longitudinal velocity.

This will not be true in practice. Since the focal strength is proportional to 1/β for magnetic

quadrupoles, and 1/β2 for electrostatic quadrupoles, the beam particles will then each

experience a different focusing force due to the differences in their longitudinal velocity.

These chromatic aberrations can cause a larger spot size in final focus, as well as mismatches

and subsequent emittance increase due to phase mixing during acceleration.

The spread in longitudinal velocity originates at the ion source, which has a

nonzero temperature, causing the initial velocity of the ions to have a thermal spread.

Longitudinal compression as well as nonideal effects in the beam or the accelerator can

cause this velocity spread to increase as the ions propagate through the system.

First-order chromatic aberrations are generated by bends, which are not treated in

this thesis. Second-order chromatic aberrations can be corrected with the use of sextupole

magnets, combined suitably with bends.

Longitudinal Velocity Tilt

Chromatic aberrations can arise particularly as a consequence of the longitudinal

velocity tilt on a beam as it is being compressed. Contemporary designs for fusion power

plants as well as for the Integrated Research Experiment, discussed in chapter 1, rely on

longitudinal bunch compression by factors up to 100 in the final stages of the machine.

In order to compress the beam, the tail of the beam has to travel faster than the head.

Typically the velocity tilt is a couple of percent of the mean beam velocity. This velocity
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tilt is much larger than the thermal spread of the beam. However, in contrast to the random

thermal velocity spread, the effect of the remaining velocity tilt can be compensated for by

adding small time-dependent focusing elements to the final focus system, whose focusing

fields are timed such that all parts of the beam can experience the same effective focusing

force. In addition, the velocity tilt will eventually be removed by the longitudinal space-

charge repulsion in a charged particle beam. Ideally, the tilt is reduced to zero by the time

the beam reaches the center of the final focus system to avoid chromatic aberrations.

2.4.3 Image Charges

A charged particle beam will be surrounded by conducting surfaces as it propagates

in an accelerator. In case of magnetic focusing, the electric wires of the magnet or the

vacuum pipe will form a conducting surface, while in case of electrostatic focusing, the

electrodes are conducting. The presence of the charged particle beam will generate image

charges on these surfaces such that the electric fields in these conductors are zero. Especially

when the beam is close to one of these conductors, the image forces can significantly affect

the beam dynamics. The field generated by these image charges will in general contain

higher-order multipole fields, which act nonlinearly on the beam.

2.4.4 Higher Multipole Fields

In practice, an electrostatic or magnetic quadrupole will also contain higher-order

multipoles. They will be absent only if the charges (in case of an electrostatic quadrupole)

or the currents (in case of a magnetic quadrupole) on the focusing element have the exact

cos(2θ) distribution that is characteristic for quadrupoles. For a focusing element with
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quadrupolar symmetry, only multipoles with the same symmetry can occur. So the lowest

possible multipole is the dodecapole (cos (6θ)), in which the field depends on the distance

from the optical axis as r5. Except for beam particles close to the magnet edge, the effect

of higher-order multipoles will be small in a well designed and manufactured element.

2.4.5 Misalignments

So far, we assumed that both the beam and the focusing elements are perfectly

aligned. If a focusing element is not perfectly aligned, the beam experiences a dipole field

as it passes through, and will be kicked transversely. The beam centroid motion will then

resemble a single particle oscillation in the accelerator. As the beam passes through a

number of displaced quadrupoles, its oscillation amplitude will increase on the average,

although this increase is mitigated by acceleration. Even if all quadrupoles are perfectly

aligned, an initial beam misalignment will also cause a beam centroid oscillation. The

effects of beam misalignments have been investigated for the case of the Integrated Research

Experiment [21].

2.4.6 Beam Distribution

A particular concern for high-perveance beams is the effect of nonlinear space-

charge forces. So far, we assumed that the beam charge distribution in configuration space

is uniform, such that the space-charge force is linear. The charge distribution remains

uniform as the beam propagates only in case of a K-V distribution, which is a highly

idealized distribution function. In reality, the beam distribution will be far from a K-V

distribution, and nonlinear space-charge forces due to a nonuniform charge distribution will
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appear. Space charge nonlinearities may severely affect the beam, and detailed particle-in-

cell simulations are required to analyze their effect.

2.4.7 Three-Dimensional Effects

In two-dimensional transverse slice simulations, the beam is assumed to be in-

finitely long and all beam particles are assumed to remain in the same transverse slice,

such that Poisson’s equation needs to be solved in a 2d slice only. Two-dimensional simula-

tions are much less computer-intensive than three-dimensional simulations and are therefore

preferred as long as three-dimensional effects can be neglected.

In some situations though, three-dimensional effects need to be taken into account.

The approximation of an infinitely long beam becomes invalid for short beams, and a three-

dimensional simulation will be necessary for accurate results. Bunch compression can still

be approximately simulated in two dimensions by increasing the beam current as a function

of longitudinal distance z. Three-dimensional simulations will be needed though to validate

the results from the two-dimensional simulations.

2.4.8 Presence of Background Gas and Electrons

As the beam enters the target chamber, beam ions will collide with molecules in the

background gas, mainly consisting of BeF2, the most volatile constituent of the molten salt

Flibe [75]. In addition to scattering, background ionization and beam stripping may occur,

which can raise the charge state of the ion appreciably. According to recent results [2],

for the specific case of a 20 MeV per nucleon lead beam, initially in a +1 charge state,

entering a typical HIF chamber containing a background gas of 5 × 1013 cm−3 BeF2, the
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charge state is predicted to increase to about +10 after 3 meters, and between +13 and +14

after 5 meters. To assess the effect of stripping on the beam dynamics though, we need to

consider the behavior of the stripped electrons in the target chamber.
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Chapter 3

Simulation Codes

Detailed analysis of space-charge dominated beams is unimaginable without re-

lying on sophisticated computer codes to simulate the dynamics of the beam. Even the

envelope equations (2.44), (2.45) form a pair of coupled nonlinear differential equations that

in general can only be solved numerically. In order to consider the high-intensity beams

needed for heavy-ion inertial fusion, we need to take nonlinear space charge and other non-

ideal effects into consideration. A simple envelope solution will not suffice. Instead, the

dynamics of the beam can be studied by calculating the trajectories of many macroparti-

cles, each representing a large number of actual beam particles. Particle-in-cell codes such

as WARP, described below, follow this principle. Alternatively, the beam dynamics can be

studied by calculating the evolution of the distribution function in phase space based on the

Vlasov equation. This approach generally yields higher accuracy in low-density regions of

phase space. However, the computational power required by these Vlasov methods makes

them unattractive for the beam dynamics problems we will be concerned with here.
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In this chapter, the simulation codes are described that were used for the beam

physics problems treated in this thesis. The envelope solver JavaEnvelope, the suite of

particle-in-cell codes WARP, as well as the fluid codes CIRCE and Hermes are discussed.

3.1 JavaEnvelope

The JavaEnvelope code was originally written by William Fawley and Jason No-

votny of Lawrence Berkeley National Laboratory and was further developed by the author.

This code integrates the envelope equations (2.44), (2.45) for a focusing lattice and initial

beam parameters specified in an inputfile, and draws the calculated horizontal and vertical

beam radius as a function of the longitudinal distance z onto the screen. The lattice may

consist of drift spaces and quadrupoles, as well as neutralization points where the charge

of the beam is changed by some specified fraction. The graphical user interface, which

allows the user to change the initial beam parameters and the focusing strengths of the

quadrupoles, and the rapid envelope calculation and visual feedback make JavaEnvelope a

convenient tool for initial lattice designs. In addition, the code is equipped with a matching

routine to calculate the focusing strengths of four quadrupoles that will match a beam to a

given set of final beam parameters. The JavaEnvelope code is written in Java 2, and runs

under Unix, Linux, and Windows. Earlier versions written in Java 1.1.6 run on Macintosh

computers.
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3.2 WARP

WARP is a suite of simulation codes that represent a hierarchy of levels of analysis.

It was written to analyze beam physics problems for heavy ion inertial fusion, in particular

taking into account the nonlinear self-fields of space-charge dominated beams [34], [42].

The name “WARP” arises from its ability to handle bends in accelerator systems, which

are needed in heavy-ion inertial fusion applications [33].

WARP is used as a module for the Python interpreter language [95], which makes

it highly flexible as it allows user-programmed code steering. The WARP code relies on

the numerical package NumPy for Python [3], and makes use of the Python Gist package

for graphics [76]. WARP’s various components can be loaded and used as a code by itself

by calling the appropriate routines from the Python interpreter. As an example, an initial

calculation using WARP’s envelope solver to set up a focusing lattice may be followed by a

more detailed particle-in-cell calculation. In addition, side calculations can be carried out

in Python using the numerical routines available in NumPy when needed.

WARP uses a Python script as its inputfile. It typically contains all the informa-

tion about the focusing lattice and the initial beam parameters, as well as the commands

that run the actual simulation. Upon finishing a script, WARP can generate a dumpfile

containing all the information needed to continue the simulation at a later time. Further-

more, postprocessing as well as additional calculations can be performed by calling the

appropriate WARP, Gist, NumPy, or native Python routines from the Python interpreter.

WARP runs on Cray computers, Sun workstations and Linux machines. It has

been parallelized for the Cray T3E-900 and the IBM RS/6000 SP supercomputers.
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3.2.1 Envelope Solver

WARP contains an envelope solver, which calculates the horizontal and vertical

envelope of a beam going through a focusing lattice. The envelope solver can be used to

check the lattice specification in the input file before running the full particle simulation, as

well as for initial matching. The envelope solver uses the isochronous leap-frog algorithm

described below to integrate the envelope equations. The undepressed and depressed phase

advance defined in equations (2.51) and (2.57) are also calculated. The envelope solver

is able to handle off-axis beams, as well as a changing current and emittance whose z-

dependence is specified by the user. Several Python scripts exist that make use of WARP’s

envelope solver to match a beam to a given transport lattice, or to find the focusing strengths

needed for four quadrupoles to match a beam to a given set of final beam parameters.

3.2.2 WARP3d, WARPxy, and WARPrz

Originally, WARP was written as a fully three-dimensional particle-in-cell code

to analyze the behavior of high-intensity beams for heavy-ion inertial fusion. The three-

dimensional code is now known as WARP3d; a two-dimensional package WARPxy was

written to model one transverse slice of a beam going through a focusing system. As long

as longitudinal effects are negligible, using WARPxy is preferable to WARP3d for its speed.

Note that some longitudinal effects can be modeled to some degree even in the transverse

slice code. For instance, longitudinal compression of a beam can be partially modeled in

WARPxy by increasing the weight of each simulation particle as the line charge density

increases. Many WARPxy runs can then be validated with a few WARP3d simulations.
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In many situations, the system to be studied exhibits some form of symmetry in

the transverse plane. The run time needed in WARP can be reduced substantially by using

two-fold or four-fold symmetry for the calculation of the space-charge field. This means

that the potential is calculated in only one half or one quadrant of the system, into which

the positions of the particles located in the other half or quadrants are mapped. The space-

charge force exerted on the particles is then determined based on their mapped positions

in the half or quadrant where the potential was calculated.

WARP calculates the particle trajectories using the leap-frog algorithm, in which

the positions and velocities of the particles are advanced alternately. Figure 3.1 shows

a schematic of the leap-frog algorithm [10]. Notice that the positions and velocities of

the particles are known at different points in time. However, at those time steps where

the user may access the particles and where diagnostics are employed, WARP applies an

isochronous advance. This means that the velocity advance is split into two steps, such that

after one half-step the position and velocity are known at the same point in time [40]. The

size of each leap-frog step is specified by the user, and can vary for different parts of the

lattice depending for instance on how fast the focusing fields vary axially. For the WARP

simulations presented in this thesis, typically about fifty steps were used per half period.

On every time step, the space-charge forces acting on the beam particles need to be

calculated. The self-field is calculated in the beam frame using the particle-in-cell method,

in which the charge of the beam particles is deposited onto a rectangular grid, followed by

solving Poisson’s equation using the Fast Fourier Transform method. Since the self-field is

assumed to be electrostatic in the beam frame, only Poisson’s equation needs to be solved.



56

Velocity

Position

vold

Deposit charge on the grid
Calculate electrostatic potential
Interpolate electric field
Advance velocities

Advance positions

Deposit charge on the grid
Calculate electrostatic potential
Interpolate electric field
Advance velocities

Advance positions

Time

vnew

xold xnew

t t t+ 3
2 ∆t t+ 1

2 ∆ t t+ ∆

Figure 3.1: Schematic of the leap-frog algorithm [10]. The dashed line represents the
isochronous leap-frog algorithm.

The grid size is specified by the user; for the WARPxy simulations presented here, typically

a grid size of 128 × 128 was used. A finer grid improves the accuracy of the space-charge

force, but also increases the required computing time.

Longitudinally, WARP3d uses the usual Fourier transform to solve Poisson’s equa-

tion. This implicitly assumes that the potential is periodic. This assumption is reasonable

as long as the beam does not approach the ends of the grid [33], because the surrounding

conducting walls effectively shield the virtual beams produced by the transform.

Transversely, both WARP3d and WARPxy use a sine-transform instead of the

usual Fourier transform to solve Poisson’s equation. This effectively puts an artificial rect-

angular conducting wall around the edges of the grid. Image charges on such a rectangular

conducting wall could significantly distort the beam. This artificial wall should therefore
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be carefully shielded in the simulation. This can be done either by representing in the

simulation the actual conducting boundaries, or by adding a fictitious circular conducting

boundary that just fits inside the simulation grid. Such conducting boundaries can be mod-

eled in WARP by the capacity matrix technique [41], [42], [49]. By accurately representing

the presence of conducting boundaries using the capacity matrix technique, the effect of im-

age charges on the beam are included properly in the simulation. This may be particularly

of importance for off-axis beams.

In the presence of complex conducting boundaries, the capacity matrix may be-

come too large to be solved in a reasonable amount of time. For those cases, a successive

overrelaxation (SOR) and a multi-grid Poisson solver are available in WARP3d [42]. For the

simulations presented here, these solvers were not needed. Any non-conducting materials

that may be present near the beam, such as the Flibe jets in the target chamber, were not

included in the simulations. Their behavior may be quite complex due to their dielectric

properties, as well as due to the possibility of flash ionization.

The lattice elements may consist of accelerating gaps, quadrupoles, as well as gen-

erally defined multipole elements. Accelerating gaps can have a user-defined time-dependent

accelerating field. The generic quadrupole elements are hard-edged, and are most conve-

nient to use if higher-order multipoles are absent and any axial dependence of the field of

each quadrupole is ignored. For hard-edged elements with an axially uniform field, the leap-

frog algorithm as implemented in WARP employs residence corrections. This means that

the impulse received by the beam particles going through a focusing element is corrected

for the time actually spent by each particle inside the element. The multipole elements
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are z-dependent and are more generally defined in terms of the parameters n and ν as in

equations (2.9)–(2.14). The multipole fields can be given a rotation angle, which can be

used to include the effect of the skew quadrupole component in a slightly rotated quadrupo-

lar magnet. The quadrupoles as well as the multipole fields can be placed off-axis in the

simulation in order to represent misaligned focusing elements.

A Python script is available to set up the required multipole fields as a function

of z for a quadrupole with a given longitudinal fall-off in the focusing fields near its ends.

In this script, by default the pseudo-octupole e/b2,1 (z) and its accompanying axial field

e/b′2,0 (z) are set up in addition to the z-dependent quadrupolar field e/b2,0 (z). Additional

higher-order multipoles can be included if desired. The script assumes by default that the

fringe fields have the fall-off given by equation (2.73), with a fringe length given by the user.

Alternatively, the script can handle a user-defined fall-off shape.

The initial number of macroparticles is specified by the user in the inputfile. For

the WARPxy simulations described in this thesis, typically about 40,000 macroparticles

were used. If a particle strays off the center of the beamline farther than an aperture

distance specified by the user, it is removed from the simulation. Although some particles

will be lost in a simulation due to halo formation, the loss of too large (& 1%) a fraction of

the particles may indicate that the simulation was insufficiently accurate.

The accuracy of a particle-in-cell simulation depends on the number of macropar-

ticles, the number of grid cells, and the step size that was used in the numerical integration.

Typically for a WARPxy simulation, about 100 macroparticles per grid cell with 50 steps

per lattice half period are used, whereas the grid size is chosen such that about 10 grid cells
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cover the beam transversely. The convergence of a particle-in-cell simulation can be verified

by comparing its results with those of a run using a larger number of macroparticles, a finer

grid, or a smaller step size.

The initial distribution of these particles can be either K-V (equation (2.24)) or

semi-Gaussian (equation (2.50)), as well as an arbitrary particle distribution dependent on

the radial coordinate r. It is also possible to modify the particle arrays in WARP from the

Python interpreter directly in order to model any arbitrary particle distribution. For the

initial particle load in the simulations described here, the digit-reversed method was used

as a non-random number generator. The initial beam distribution can be placed off-axis in

order to simulate misaligned beams.

In addition to WARP3d and WARPxy, WARP contains a package WARPrz for

simulations of cylindrically symmetric systems. Although no WARPrz simulations were

done for this thesis work, the fluid/envelope code Hermes discussed in section 3.2.4 makes

use of the field solver in WARPrz to find the longitudinal electric field in the Hermes model.

3.2.3 The CIRCE Module

CIRCE is a fast-running 3D envelope code [89], which was originally written as a

stand-alone code but is now incorporated into WARP. CIRCE was originally written for

the Small Recirculator Experiment at Livermore [31]; its acronym stands for “Calculation of

Ion Recirculation by Compressible Envelopes”. In the CIRCE model, the beam is divided

into many axial slices, each having a fixed charge and a constant transverse normalized

emittance. The slices are separated from each other by slice boundaries. The transverse

beam dynamics is then found by integrating the envelope equations (2.44), (2.45) for each
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slice boundary separately, including both the perveance and the emittance terms. The

lowest-order effect of image fields from a circular beam pipe of infinite conductivity can also

be included in the CIRCE calculation. Higher-order multipole fields are neglected though,

as appropriate for an envelope solver.

For the longitudinal dynamics, the axial beam slices are treated as Lagrangian

fluid elements. The slice boundaries, identified by an index i, are characterized by an axial

velocity vi, and an arrival time ti for a given z location. Typically about one hundred slices

are used. Each slice i+ 1
2 contains a fixed charge ∆Qi+ 1

2
. This approach implicitly assumes

that the longitudinal temperature of the beam is negligible [89]. The CIRCE model used

for the longitudinal dynamics is shown in figure 3.2.

The longitudinal equation of motion can be written as

mγ3 dv

dt
= qeE, (3.1)

in which mγ3 is the longitudinal mass [83] and E is the longitudinal electric field. It consists

of the externally applied longitudinal field Eext and the longitudinal space-charge field Esp

due to the beam itself.

Several models are available in CIRCE to find the longitudinal force Esp generated

by the space charge of the beam. These models are based on the g-factor model, which can

be derived as follows. The potential of an infinite beam of circular cross section with radius

a, surrounded by a conducting circular pipe of radius R, is given by

Φ′ =





− λ′
2πε0

ln
(

r
R

)
outside the beam,

− λ′
4πε0

(
r2

a2 − 1
)
− λ′

2πε0
ln

(
a
R

)
inside the beam,

(3.2)

in which primed variables are taken in the beam frame. Note that r, R, and a are transverse
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Figure 3.2: Schematic of the CIRCE model.

dimensions, which are the equal in the beam frame and in the laboratory frame. By taking

the partial derivative of Φ inside the beam with respect to z′, we find the longitudinal

electric field there:

E′
sp =

1
4πε0

(
r2

a2
− 1

)
∂λ′

∂z′
+

1
2πε0

ln
( a

R

) ∂λ′

∂z′
− λ′

2πε0

r2

a3

∂a

∂z′
+

λ′

2πε0a

∂a

∂z′
. (3.3)

In space-charge dominated beams, the electric field dominates over the thermal motion of

the beam ions. Nonuniformities in the space-charge density will then fade out rapidly due to

the electric field that they generate. We will therefore assume that space-charge dominated

beams have a uniform space-charge density ρ, which means that λ′/a2 is constant along the
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beam. We can then express ∂a/∂z′ in terms of ∂λ′/∂z′:

1
a

∂a

∂z′
=

1
2

1
λ′

∂λ′

∂z′
. (3.4)

Substitution then yields

E′
sp =

1
2πε0

ln
( a

R

) ∂λ′

∂z′
. (3.5)

In the laboratory frame, we can write this equation as

Esp =
1

2πε0γ2
ln

( a

R

) ∂λ

∂z
, (3.6)

taking into account the Lorentz contraction in the longitudinal dimension. We can write

this in the form

Esp = − g

4πε0γ2

∂λ

∂z
, (3.7)

if we define the g-factor as

g ≡ 2 ln
(

R

a

)
. (3.8)

For elliptical beams with axes a and b, the generalization of this equation is

g = ln
(

R2

ab

)
. (3.9)

Near the ends of the beam, the g-factor model begins to break down because of the

rapid variation in beam radius along the beam. More accurate models, which include the

variation of the beam radius, are used there. Notice that the longitudinal and transverse

dynamics are coupled through the perveance (which depends on the longitudinal expansion

or compression of the beam) and the g-factor.
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3.2.4 The Hermes Project

Although the CIRCE module described in the previous section is useful for rough

studies of longitudinal beam dynamics, if a large (& 50 for the IRE drift compression

calculations described in chapter 4) number of slices is used, the code tends to produce

unphysical results due to slices overtaking each other. It is therefore difficult to perform

higher-precision calculations with a larger number of slices to check the accuracy of the

results. Slice overtaking, often followed by code crashes, usually takes place near the ends

of the beam, although CIRCE may be calculating the longitudinal dynamics in other parts

of the beam correctly.

There are two possible causes for slice overtaking to occur. First, CIRCE is based

on a fluid model, which may be invalid in the physical regime we are interested in. Par-

ticularly, longitudinal acoustic waves occurring in the beam may steepen into shock waves

due to the nonlinear nature of the fluid equations. The fluid model may then break down

as fluid properties such as the velocity become double-valued [90]. Although shocks may be

modeled in a fluid code by using artificial viscosity [84], [90], the results from such a code

do not necessarily agree with a kinetic calculation.

Secondly, the longitudinal electric field in CIRCE may not be calculated accurately,

particularly near the beam ends, where the g-factor model breaks down. Although more

advanced field solvers are available in CIRCE, they rely on knowing the distance from a

slice boundary to the ends of the beam. This can only be calculated in approximation from

the arrival times by extrapolating the slice boundary positions forward and backward in

time. In addition, these models still break down near the beam tips, where slice overtaking
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usually takes place.

In order to deal with these issues, a time-dependent code Hermes was written

based on CIRCE. In the Hermes model, the positions of the different slice boundaries are

calculated at a given time, instead of the arrival times at a given position, which is done

in CIRCE. This is more suitable for a reliable calculation of the longitudinal electric field

for three reasons. First, the g-factor model can be implemented more easily in such a code,

since it depends on derivatives with respect to z. Also the more advanced models of CIRCE

can be implemented in Hermes without the need to extrapolate the position of the beam

tips from the arrival times. The biggest advantage over CIRCE is though that since we

have the position of all the slice boundaries available at each time step, we can find the

longitudinal electric field directly from the charge density by solving Poisson’s equation.

The Hermes model is shown in figure 3.3. Each slice boundary still follows its own

transverse envelope equation. For the calculation of the longitudinal electric field, Hermes

assumes the beam is cylindrically symmetric. It then acts as an RZ code by using the

WARPrz package to calculate the longitudinal electric field. This allows us to find the

longitudinal electric field accurately even near the beam ends. This approach eliminates

the need to rely on the g-factor model, which breaks down near the ends of the beam.

To calculate the longitudinal electric field, the charge of each slice is deposited

onto an RZ grid. We assume that each slice has a uniform charge density and is cylindrical

with a radius equal to
√

ab, where a and b are the horizontal and vertical beam radius of

the slice. An infinitesimal ring of charge dq = 2πrdrdz between longitudinal positions z

and z + dz and radii r and r + dr is then deposited onto the grid using a volume weighting
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scheme, shown in figure 3.4. We then integrate the infinitesimal rings of charges over each

slice, and sum over the slices, to determine the charge density to be associated with each

grid point. For a grid point i, j at position ri, zj and a slice with charge density ρ, this

yields

ρ0,j = 2fjρ, (3.10)

ρi,j = fjρ for i < n, (3.11)

ρn,j = fj
ρ

n

(
1
4

(2n− 1)− ξ

2n + 1

(
n +

1
2
ξ

)(
1
2
ξ2 + nξ − 1− 2n

))
, (3.12)

ρn+1,j = fj
ρ

(n + 1) (2n + 1)
ξ2

(
n +

1
2
ξ

)2

, (3.13)

ρi,j = 0 for i > n + 1, (3.14)

in which n = floor
(√

ab
∆r

)
, ξ =

√
ab

∆r − n, and fj is a scaling factor which is equal to unity if

the slice covers both axially neighboring grid cells, and less than unity otherwise, as shown

in figure 3.5. This weighting scheme conserves the RMS beam radius. Note that a grid

point on axis is assigned twice the density.

To find the potential, we use the Poisson solver for cylindrically symmetric systems

from Warp’s RZ package [19]. This field solver uses the periodic FFT transform longitu-

dinally, and a tridiagonal difference scheme radially. Longitudinally, the grid size is equal

to the length of the beam plus four times the pipe radius on either side in order to shield

fields from the virtual beams that exist due to the periodic nature of the FFT. The radial

grid size is equal to the largest aperture present on this domain. The longitudinal electric

field acting on a slice boundary is then calculated from

Ez =
∆z+ − 1

2∆z

(∆z)2
Φ− +

∆z− −∆z+

(∆z)2
Φ0 +

−∆z− + 1
2∆z

(∆z)2
Φ+ + O

(
∆z2

)
. (3.15)
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Figure 3.3: Schematic of the Hermes model.

(see figure 3.6). The Hermes code can calculate the longitudinal electric field either on axis,

or as an average over the cross section of the beam, using the same weighting scheme as for

the charge deposition.

Hermes has the option of using artificial viscosity to be able to handle shocks.

Artificial viscosity in Hermes is based on Richtmyer’s approach [84], in which a viscous

force of the form

Fviscous =





−m`2 ρ0

ρ
∂
∂z

(
ρ0

ρ

(
∂v
∂z

)2
)

if v ∂v
∂z < 0,

0 if v ∂v
∂z > 0,

(3.16)

is added to the longitudinal equation of motion. In this equation, ρ is the local charge
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Figure 3.4: The volume weighting scheme used in Hermes for charge deposition. The
volumes are calculated as

V1 = [z − j∆z]π
[
((i + 1) ∆r)2 − r2

]
,

V2 = [(j + 1)∆z − z] π
[
((i + 1) ∆r)2 − r2

]
,

V3 = [z − j∆z]π
[
r2 − (i∆r)2

]
,

V4 = [(j + 1)∆z − z] π
[
r2 − (i∆r)2

]
,

V = V1 + V2 + V3 + V4

= π
[
(i + 1)2 − i2

]
(∆r)2 ∆z.
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Figure 3.5: Scaling factor fj for the charge deposition described by equations (3.10) through
(3.14), as determined by the relative position of the slice boundaries to the grid points.
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Figure 3.6: Interpolation scheme for the longitudinal electric field in Hermes (equation
(3.15)).

density, whereas ρ0 is some global measure of the charge density. In Hermes, ρ0 was set

equal to the charge density at the center of the beam. The quantity ` is the typical distance

over which a shock is smeared out in the calculation, and should be set equal to a couple of

slice widths. For the calculations presented in this thesis, artificial viscosity was not used

since no shocks occurred.

Test Cases

The g-factor model as described in section 3.2.3 is valid for beams that are long

compared to their radius. To check the validity of the Hermes model, a long test beam was

simulated in a periodic focusing lattice, and the simulation results were compared to the

g-factor model. The beam parameters are listed in table 3.1, whereas the lattice parameters

are given in table 3.2. These parameters correspond to an IRE beam just before the final

focus system, if we assume a pulse duration of 100 ns (chapter 4). The current profile was

flat, with parabolic ends of 5% of the beam length on each side. The lattice was set up

for a 72◦ undepressed tune with 65% occupancy, which is what we expect just before final
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Ion 39K+

Beam energy 200 MeV
Edge emittance 9.52 π mm mrad
Initial beam current 46.875 A
Initial beam length 3.13 m
Initial beam duration 100 ns
Initial beam radius 59.1 mm
Initial perveance 6.67 · 10−5

Table 3.1: Beam parameters of the 100 ns test beam.

Lattice half period 4.32 m
Occupancy 65 %
Focusing strength 1.645 T/m
Undepressed tune 72◦

Pipe radius 10.01 mm

Table 3.2: The transport lattice used for the 100 ns test beam.

focus. Unlike the drift compression schemes presented in chapter 4, the lattice properties

were not adjusted for the change in current as the beam expands.

The simulation ran for twenty lattice half periods, using twenty steps per half

period with one hundred slices. For the Hermes calculation, a 128 × 128 grid was used

without spatial filtering. Figure 3.7 shows the current profile of the beam as calculated by

the Hermes model and the g-factor model, after twenty half lattice periods. As expected the

two models agree very well, except near the beam ends as well as in the transition region

from the flat-top to the parabolic ends.

We expect the g-factor model to deviate from the Hermes model for short beams,

since the g-factor model breaks down in that regime. We repeated the simulation described

above for a test beam with a 5 ns initial duration. Its parameters are given in table 3.3.

Note that the beam length of 156.6 mm is now of the same order of magnitude as the beam
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Figure 3.7: The beam current profile for an initially 100 ns beam of 46.875 A, as calculated
by the Hermes model and the g-factor model.

radius of 59.1 mm. Again a flat current profile was used, with parabolic ends of 5% of the

beam length each. The transport lattice for the 5 ns test beam is described in table 3.4.

The simulation ran for ten lattice half periods, using one hundred steps per lattice

half period and a 1024×256 RZ grid for the Hermes model with one hundred slices. Due to

the fast longitudinal expansion of the beam, the beam current decreases rapidly. In contrast

to the drift compression calculations presented in chapter 4, for this test case the lattice
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was not adjusted for the changing current, which then results in a decreasing average beam

radius. After a couple of lattice half periods the beam radius becomes small compared to

the pipe radius, which necessitates a very fine grid radially.

Figure 3.8 shows the beam current as a function of position along the lattice at a

fixed time after traveling one, three, five and ten lattice half periods. The g-factor model

significantly deviates from the Hermes model. This is due to the fact that for the 5 ns test

beam, the assumption that the beam is long compared to its radius is no longer valid.

We can check the accuracy of the Hermes results by repeating the calculation

using a larger number of slices, a larger number of steps, or a finer grid. Table 3.5 shows

the current at the beam center after ten lattice half periods, using different numerical

parameters. Since the difference in current between these cases is less than 0.12%, we can

conclude that the calculations described above were indeed converged. Figure 3.9 shows the

current profile after four half lattice periods for a 5 ns beam using the numerical parameters

indicated in table 3.5. This figure demonstrates that the difference in the calculated current

profile is minimal for these cases.

Ion 39K+

Beam energy 200 MeV
Edge emittance 9.52 π mm mrad
Initial beam current 937.5 A
Initial beam length 156.6 mm
Initial beam duration 5 ns
Initial beam radius 59.1 mm
Initial perveance 1.33 · 10−3

Table 3.3: Beam parameters for the 5 ns test beam.
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Lattice half period 0.966 m
Occupancy 65 %
Focusing strength 32.90 T/m
Undepressed tune 72◦

Pipe radius 10.01 mm

Table 3.4: The transport lattice used for the 5 ns test beam.
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Figure 3.8: The beam current profile for an initially 5 ns beam of 937.5 A after traveling
various distances along the transport lattice, as calculated by the Hermes model and by the
g-factor model.
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Figure 3.9: The beam current profile for an initially 5 ns beam of 937.5 A after traveling
four lattice half periods, as calculated by the Hermes model.
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Number of
slices

Number of steps
per half period

RZ grid
size

Current at
beam center (A)

100 100 1024× 256 224.15
100 100 2048× 256 223.90
100 100 1024× 512 224.15
200 100 1024× 512 224.18
100 200 1024× 256 224.13

Table 3.5: The current at the beam center after traveling ten lattice half periods, for the
5 ns test beam, as calculated by Hermes using different numerical parameters.

Comparison with WARP3d

To assess the validity of the Hermes calculations, we can compare their results

to 3D particle-in-cell simulations using WARP3d. There are three differences between

the Hermes model and a WARP3d simulation. First, Hermes is based on a fluid model

longitudinally, which means that one longitudinal velocity is associated with each fluid

element. In contrast, WARP3d uses a kinetic model, in which different macroparticles in a

given slice of the beam generally have different longitudinal velocities. As a consequence, in

a kinetic model there exists an effective longitudinal pressure. Whereas Hermes takes the

transverse pressure into account by means of the emittance term in the transverse envelope

equation, no longitudinal pressure has been included so far in the Hermes model. Finally,

for the calculation of the longitudinal electric field, the beam slices are approximated as

being cylindrical in the Hermes model. This approximation is of course absent in WARP3d.

A comparison between Hermes and WARP3d was made for the 5 ns test beam

described above. In order to minimize kinetic effects in the WARP3d simulation, the initial

longitudinal emittance was set to zero. The beam was simulated for ten lattice half periods,

using twenty steps per half period and 1,000,000 particles on a 128× 128× 512 grid as the
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Number of particles
in millions

Number of steps
per half period

Grid
size

Current at
beam center (A)

1 20 128× 128× 512 217.1
1 20 256× 256× 512 217.2
1 40 128× 128× 512 216.6
1 20 128× 128× 1024 218.6
2 20 128× 128× 512 217.2

Table 3.6: The current at the beam center after traveling ten lattice half periods, for the
5 ns test beam, as calculated by WARP3d using different numerical parameters.

base line case. These simulation parameters were varied in order to guarantee convergence.

Table 3.6 lists the current at the beam center as calculated by WARP3d after ten

lattice half periods. Comparison with table 3.5 shows that the difference between Hermes

and WARP3d in the final current at the beam center is about 3%. Figure 3.10 shows the

current profile after ten lattice half periods as calculated by WARP3d, by Hermes, and by

the g-factor model.

The Cause of Slice Overtaking

Both CIRCE and Hermes suffer from slice overtaking, which is unphysical in the

Lagrangian fluid model on which CIRCE and Hermes are based. The more accurate calcu-

lation of the longitudinal electric field in the Hermes model does not prevent slice overtaking

to occur in all cases. In this section, we derive an analytic expression for the longitudinal

electric field in the Hermes model to find the cause of slice overtaking.

In the Hermes model, for the calculation of the longitudinal electric field the beam

is assumed to be circular transversely instead of elliptical. The system is then cylindrically
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Figure 3.10: The beam current profile for an initially 5 ns beam of 937.5 A after traveling
ten lattice half periods, as calculated by WARP3d, by Hermes, and by the g-factor model.
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symmetric, for which we can write Poisson’s equation as

1
r

∂

∂r

(
r
∂φ

∂r

)
+

∂2φ

∂z2
= − ρ

ε0
. (3.17)

The solution to this equation can be written in terms of a Fourier-Bessel expansion:

φ (r, z) =
∞∑

n=1

fn (z) J0

(xnr

R

)
, (3.18)

in which J0 is the Bessel function of order zero, xn is the nth zero of J0, R is the pipe radius,

and fn (z) is a set of functions to be determined [54]. Substitution of this expansion into

Poisson’s equation gives

∞∑

n=1

[
f ′′n (z)− fn (z)

(xn

R

)2
]

J0

(xnr

R

)
= − ρ

ε0
. (3.19)

We can then use the identity [54]

∫ R

0
rJ0

(xnr

R

)
J0

(xmr

R

)
dr =

1
2

[J1 (xn)]2 δnm, (3.20)

in which J1 is the Bessel function of first order, to find an ordinary differential equation for

the functions fn:

f ′′n (z)− fn (z)
(xn

R

)2
= − 2

ε0R2

1
[J1 (xn)]2

∫ R

0
ρrJ0

(xnr

R

)
dr. (3.21)

In the Hermes model, the charge density is uniform transversely up to the beam radius

a (z). We can then evaluate the integral on the right hand side of this equation, using [39]

∫ x

0
tJ0 (t) dt = xJ1 (x) (3.22)

to find

f ′′n (z)− fn (z)
(xn

R

)2
= − 2

ε0

λ (z)
πa (z)2

1
[xnJ1 (xn)]2

a (z) xn

R
J1

(
xna (z)

R

)
. (3.23)
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Now we define the functions gn (z) ≡ −f ′n (z), such that the longitudinal electric field can

be written as

Ez (r, z) =
∞∑

n=1

gn (z) J0

(xnr

R

)
. (3.24)

The functions gn (z) satisfy the ordinary differential equation

g′′n (z)− gn (z)
(xn

R

)2
=

2
ε0R

1
xn [J1 (xn)]2

∂

∂z

[
λ (z)
πa (z)

J1

(
xna (z)

R

)]
. (3.25)

We can solve for gn (z) in terms of the line charge density λ (z) and the beam radius a (z)

as [88]

gn (z) =
xn

πε0R

1
[xnJ1 (xn)]2

∫ +∞

−∞
sign

(
z − z′

)
exp

(
−xn

R

∣∣z − z′
∣∣
)

J1

(
xna (z′)

R

)
λ (z′)
a (z′)

dz′,

(3.26)

using the boundary condition that gn (z) −→ 0 for |z| −→ ∞. To find the longitudinal

electric field on a slice boundary, we average over the area of the slice boundary using

equation (3.22) and sum over the Fourier-Bessel components:

Ez (z) =
∞∑

n=1

1
πa (z)2

∫ a(z)

0
gn (z)J0

(xnr

R

)
2πrdr (3.27)

=
∞∑

n=1

gn (z)
2R

xna (z)
J1

(
xna (z)

R

)
. (3.28)

Substituting our solution for gn (z), we find

Ez (z) =
2

πε0a (z)

∞∑

n=1

1
[xnJ1 (xn)]2

J1

(
xna (z)

R

)

∫ ∞

−∞
exp

(
−xn

R

∣∣z − z′
∣∣
)

J1

(
xna (z′)

R

)
λ (z′)
a (z′)

dz′. (3.29)

For a slice boundary i at position zi, we can rewrite this as

Ei =
2

πε0R2

∞∑

n=1

1
[J1 (xn)]2

J1 (xnai/R)
xnai/R

(
sL
i − sR

i

)
, (3.30)
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in which sL
i and sR

i are defined as

sL
i ≡

∫ zi

−∞
exp

(xn

R

(
z′ − zi

)) J1 (xna (z′) /R)
xna (z′) /R

dQ
(
z′

)
, (3.31)

sR
i ≡

∫ ∞

zi

exp
(xn

R

(
zi − z′

)) J1 (xna (z′) /R)
xna (z′) /R

dQ
(
z′

)
. (3.32)

We can express sL
i and sR

i in terms of recursion relations:

sL
i+1 = exp

(xn

R
(zi − zi+1)

)
sL
i

+
∫ zi+1

zi

exp
(xn

R

(
z′ − zi+1

)) J1 (xna (z′) /R)
xna (z′) /R

dQ
(
z′

)
(3.33)

sR
i−1 = exp

(xn

R
(zi−1 − zi)

)
sR
i

+
∫ zi

zi−1

exp
(xn

R

(
zi−1 − z′

)) J1 (xna (z′) /R)
xna (z′) /R

dQ
(
z′

)
(3.34)

using sL
0 = 0 and sR

N = 0 as the starting values for the recursion. This expression for the

longitudinal electric field has been implemented in Hermes as an alternative to the field

solver based on WARPrz, described above. The direction of the recursion in equations

(3.33), (3.34) was chosen such as to avoid numerical overflow due to large exponential

factors. The integrals in the recursion relations (3.33), (3.34) were evaluated by taken the

line charge density (given by dQ (z′) = λ (z′) dz′) to be uniform within each slice, and the

factor J1(xna(z′)/R)
xna(z′)/R to vary linearly from one slice boundary to the next. The integrals in

the recursion relations (3.33), (3.34) can then be evaluated analytically, which results in an

expression that resembles the trapezoidal rule. Applying the trapezoidal rule directly to

the integrals in the recursion relations gives poor results, as the exponential fall-off cannot

be represented well by a linear function, particularly for Bessel modes with large xn.

The Fourier-Bessel model has shown agreement with the results using WARPrz’s

field solver. However, since we assume in the Fourier-Bessel model that the line charge
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density is uniform within each slice, typically we need a much larger number of slices to

reach convergence in the Fourier-Bessel model. For the 5 ns test beam discussed above, the

Fourier-Bessel model implemented in Hermes, using 400 slices with 100 steps per lattice

half period and 128 terms in the Fourier-Bessel expansion, the current at the beam center

after traveling ten lattice half periods was calculated to be 223.65 A, compared to 224.15 A

using Hermes with WARPrz’s field solver (table 3.5).

We can now consider the electric field on a slice boundary i as it approaches slice

boundary i+1. Let the two slice boundaries have an equal radius a. From equations (3.30)

and (3.33), we find that the electric field due to the charge ∆Q between them, summed

over the Bessel-Fourier components n is

∆Ei (z) =
2∆Q

πε0R2

∞∑

n=1

[
J1 (xna/R)

J1 (xn) xna/R

]2

. (3.35)

For a/R −→ 0, the sum diverges, and we find ∆Ei (z) −→∞. In this limit, the slice reduces

to a point charge in the center of a conducting pipe, for which the repulsive force diverges

as we approach it. For a/R = 1, we use [98]

∞∑

n=1

(
1
xn

)2

=
1
4

(3.36)

to find ∆Ei (z) = ∆Q/
(
2πε0R

2
)
. For a/R between zero and one, the sum was evaluated

numerically. Figure 3.11 shows the repulsive electric field that was found from equation

(3.35) for a slice compressed to zero length, as a function of the beam radius a divided by

the pipe radius R. For a non-zero beam radius, the repulsive electric field attains a finite

value. This means that if slice boundary i approaches slice boundary i+1 with a sufficiently

large velocity, the repelling force on slice boundary i will not be strong enough to stop it.

Slice overtaking will then occur.
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Figure 3.11: The repulsive electric field at the surface of a slice, compressed to zero length,
as a function of the beam radius of the slice.

We conclude that the fluid model on which CIRCE and Hermes are based, do not

exclude the possibility of slice overtaking. Slice overtaking may be prevented by adding a

pressure term due to the longitudinal emittance of the beam to the equation of motion of the

slice boundaries, since the repelling force would then be unbounded as two slice boundaries

approach each other. However, the longitudinal emittance that exists in beams relevant

for heavy ion inertial fusion is typically too low to satisfactorily solve the slice overtaking

problem. Before pressure would stop two slice boundaries approaching each other, the

slice would be compressed to such a degree that the current in that slice would become

enormous. This is not what we expect physically to happen. Instead, it should be viewed
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as an indication that kinetic effects are important for the system under consideration, and

that the fluid model on which CIRCE and Hermes are based is inadequate.
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Chapter 4

The IRE Drift Compression

Section

As we saw in the discussion of the g-factor model in section 3.2.3, the longitudinal

electric field in a charged particle beam is shielded by the conducting pipe in which the

beam travels. The shielding effect depends on the beam and pipe radii, as reflected in

equations (3.7) and (3.9) in the g-factor model. Therefore, the longitudinal dynamics of the

beam depends on the transverse dynamics. Inversely, the transverse dynamics of the beam

depends on the perveance and hence on the current, which depends on the longitudinal

compression or expansion that the beam has undergone. So the longitudinal and transverse

dynamics of a space-charge dominated beam are coupled. In order to design a drift com-

pression section, in which the current changes continuously, we need to resort to iteration

over small longitudinal distances. On each iteration, small changes are made to the lattice

properties, until the transverse and longitudinal dynamics of the beam have converged.
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4.1 Designing a Drift Compression Section

The design of a drift compression section for the IRE is based on the standard IRE

parameters given in table 1.2. At the end of the accelerator, the beam has a kinetic energy of

200 MeV. No further acceleration takes place in the drift compression section. Each beam

has a charge of 4.6875 µC, with a pulse duration of 336 ns at the end of the accelerator.

Our aim is to reduce the pulse duration to about 10 ns to 20 ns at the end of the drift

compression section, based on target temperature considerations [7], which corresponds to

an average beam current of 937.5 A to 468.75 A for a flat current profile. As we showed in

section 3.2.4, the g-factor model is inaccurate in this regime. Therefore, the Hermes model

was used to design a drift compression section for the IRE.

Designing a drift compression section consists of one backward and one forward

Hermes run. In the backward run, the drift compression section is set up starting from a

desired final beam pulse at the end of drift compression. We choose a beam duration we

would like to achieve there, and we find the corresponding final current. We assume the

current profile to be a flat-top, with 25% parabolic fall-offs on each side. At final focus, the

occupancy η was chosen to be 65%, which is near the practically achievable limit. For the

designs presented here, the occupancy was held constant in the drift compression section,

although that is not a necessary design requirement. The undepressed tune was chosen to

be 72◦, which is low enough for the beam to be stable. The beam radius at the entrance

of the final focus section was chosen to be 6 cm, since we need a fairly large beam radius

in the final focus system in order to be able to focus the beam on target. These numerical

values allow us to calculate the perveance at final focus and the lattice half period that we



86

would need for a transport lattice from the approximate relations described in section 2.3.1.

We can then set up a transport lattice in WARP and use WARP’s envelope solver to find

the magnetic field gradient in the quadrupoles to achieve a tune of 72◦.

Next, we set up a large (& 300) number of lattice half periods of this transport

lattice. We then initialize a Hermes beam in the last couple of half periods, making sure

the entire beam is covered by the lattice. The beam is set up such that the leftmost slice

boundary is at the beginning of a lattice half period, and the beam radii of all the slice

boundaries are matched to the transport lattice.

The beam is then simulated backward in time, from the end of the drift compres-

sion to the beginning. In this backward run, the current decreases. In order to set up the

lattice, we need to iterate over each lattice half period. First, we save the parameters of

the Hermes beam at the beginning of the iteration step. We then run Hermes backwards

in time, each time step being negative, until the center of the beam reaches the center of

the preceding lattice half period. Since the beam has expanded longitudinally during this

time step, the current at the beam center has decreased. Therefore, the lattice half period

and focusing force of this half period do not exactly correspond to the actual current at the

beam center. We can calculate what the half period length and the focusing force should

be for a matched beam using the approximate formulas described in section 2.3.1. We then

adjust the previous half period, and all other half periods to the left of it, such that its

length and quadrupole strength correspond to the current we found. The Hermes beam

is then reloaded from its saved values, and Hermes is again run through this half period.

Once the difference between the calculated half period length and the actual half period
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length is smaller than a given error limit, our solution has converged and the procedure is

repeated for the next lattice half period. For the calculations presented here, an error limit

of 1. · 10−9 was chosen. The iteration converges quickly, typically taking about six steps

for each half period. This procedure is continued until the current at the beam center has

reduced to the level at the end of the accelerator. The quadrupoles that have not been used

are then removed from the simulation.

In addition to keeping the beam matched, we also need to reduce the beam radius

from its value at the final focus to its value at the end of the accelerator. To do this, we

need to describe how we would like the beam radius to vary as a function of z. For the

simulations presented here, we chose a smooth falloff given by

a (z) =





aacc + 1
2 (aff − aacc)

[
1 + tanh

(
cot

(
π

Ldc−z
Linc

))]
for z > Ldc − Linc,

aacc for z < Ldc − Linc,

(4.1)

in which aacc is the average beam radius at the end of the accelerator, as determined by the

current IRE design, aff is the average beam radius that we have chosen at the beginning of

the final focus section, z is the distance from the beginning of the drift compression section,

Ldc is the total length of the drift compression system, and Linc is the distance over which

we want the beam radius to increase from aacc to aff. Other choices, such as a simple linear

falloff, may cause mismatches to occur near discontinuities in a (z) or its derivatives.

For one iteration step, we first find the current of the beam center in the middle

of the half period from the Hermes run of the previous iteration step. We calculate the

perveance from the current, and evaluate equation (4.1) to find the desired average beam

radius in the middle of the half period. We then substitute the perveance and average

beam radius into equation (2.60) to find the half period length for the next iteration step.
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Using this new value in equation (2.61) gives us the corresponding focusing strength of the

quadrupole. The aperture is chosen based on the heuristic

aperture = 1.25×maximum beam radius + 5 mm, (4.2)

allowing a 5 mm clearance for misalignments [28]. Setting up the aperture correctly is

crucial, since the magnitude of the longitudinal electric field depends on the amount of

shielding by the aperture. The Python script to set up the IRE drift compression section

is given in Appendix A.1.

As an example, consider a beam with a 20 ns final pulse duration, using Linc =

150 m in equation (4.1). This distance was chosen to illustrate the important issue of

rematching at the beginning of drift compression, discussed below. More realistic designs

for an IRE drift compression system, such as those described in section 4.2, would use a

shorter distance Linc.

Figure 4.1 shows the beam current profile as a function of position at the end of

drift compression for this example, whereas figure 4.2 shows the beam radius at the center

of the beam, together with the aperture. Although the procedure outlined above keeps

the center of the beam approximately matched, other parts of the beam may become mis-

matched, particularly near the beam ends where the current is changing rapidly. Figure 4.3

shows the current of the various slice boundaries as a function of distance along the drift

compression system. Mismatches will occur if the current changes rapidly enough to prevent

the beam from adjusting itself adiabatically. In the present case, the distance over which

the current changes is comparable to the period of the betatron oscillation (8.24 m for the

current of the second slice boundary to increase from 16 A to 32 A compared to a betatron
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period of 9.66 m), resulting in a severe mismatch near the ends of the beam, as shown in

figure 4.4. The mismatch will be even worse if the final pulse duration or the distance Linc

in equation (4.1) is reduced.

Note that the mismatch is produced at the end of the drift compression section,

where the beam current changes most rapidly. In the backward run, the mismatch then

persists up to the beginning of the drift compression section. These mismatches are undesir-

able, since they may result in an emittance increase as well as halo formation. To minimize

the distance of the drift compression over which mismatches occur, we should therefore

rematch all slice boundaries of the beam once the backward run reaches the beginning of

the drift compression. The simulation is then run forward from the beginning of the drift

compression to the end. In this forward run of the rematched beam, some mismatch will

now occur near the end of drift compression. Since this mismatch will be formed fairly late,

it will not affect the beam severely. We then compare the beam properties at the end of drift

compression to what we intended to achieve. The RMS difference between the final and the

originally specified current profile provides a quantitative measure of their resemblance.

Figure 4.5 shows the beam radius of the second slice boundary if we rematch at

the beginning of the drift compression. Now the beam remains matched for most of the

drift compression, although a small mismatch develops near the end.

Rematching the beam does not significantly affect the longitudinal dynamics. Fig-

ure 4.6 shows the current profile at the end of drift compression, if the beam is rematched

at the beginning of drift compression. The current profile is close to the originally specified

current profile, as shown by the RMS current deviation being only 0.65%.
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Figure 4.1: The current profile as a function of position, for a 20 ns final pulse duration,
if the beam is not rematched at the beginning of drift compression. For this calculation,
50 slices were used on a 64× 128 RZ grid with a 3 cm step size.
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Figure 4.2: The transverse beam envelope for the beam center, for a 20 ns final pulse
duration, if the beam is not rematched at the beginning of drift compression. For this
calculation, 50 slices were used on a 64× 128 RZ grid with a 3 cm step size.
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Figure 4.3: The current for different slices of the beam for a 20 ns final pulse duration, if
the beam is not rematched at the beginning of drift compression. For this calculation, 50
slices were used on a 64× 128 RZ grid with a 3 cm step size.



93

 50  100  150
 0

 50

 100

Distance (m)

B
ea

m
 r

ad
iu

s 
(m

m
)

Horizontal

Vertical

Aperture

Figure 4.4: The transverse beam envelope for the second slice boundary of the beam, for a
20 ns final pulse length, if the beam is not rematched at the beginning of drift compression.
For this calculation, 50 slices were used on a 64× 128 RZ grid with a 3 cm step size.
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Figure 4.5: The transverse beam envelope for the second slice boundary of the beam, for a
20 ns final pulse duration, if the beam is rematched at the beginning of drift compression.
For this calculation, 50 slices were used on a 64× 128 RZ grid with a 3 cm step size.
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Figure 4.6: The current profile as a function of position, for a 20 ns final pulse duration, if
the beam is rematched at the beginning of drift compression. The change in mean beam
radius took place over 150 m. For this calculation, 50 slices were used on a 64 × 128 RZ
grid with a 3 cm step size.
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4.2 IRE Drift Compression Designs

In practical designs for an IRE drift compression section, we would like to keep

the beam radius small for most of the drift compression. In order to check the feasibility

of this, several drift compression sections were designed for final pulse durations of 20 ns,

15 ns, and 10 ns, whereas in equation (4.1) the distance Linc for the beam radius to increase

was chosen to be 25 times the lattice half period length at final focus. The final beam pulse

after rematching at the beginning of the drift compression section was then compared to

the initially specified beam pulse. Table 4.1 lists the numerical parameters that were used

for the Hermes calculations.

Figure 4.7 shows the final beam pulse after rematching at the beginning of drift

compression, together with the initially specified final beam pulse, for final beam durations

of 20 ns, 15 ns, and 10 ns. In all cases, the final beam pulse after rematching is close to what

was initially specified. Table 4.2 lists the RMS current difference between the final beam

pulse and the initially specified final beam pulse for the three cases under consideration,

as well as the length of the drift compression section and the required initial velocity tilt

that was found from the Hermes calculations. Figure 4.8 shows the initial velocity tilt for

the final pulse durations for the 20 ns, 15 ns, and 10 ns final pulse durations. Since this

velocity profile is smooth, we believe that such a velocity profile is achievable in practice.

Final beam duration (ns) Number of slices RZ grid size Step size (cm)
20 50 64× 128 3
15 50 64× 128 3
10 50 64× 256 3

Table 4.1: Numerical parameters used in the Hermes calculations for the IRE drift com-
pression designs.
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Final beam
duration (ns)

Initial head-to-tail
velocity tilt (%)

Drift compression
length (m)

RMS current
deviation (%)

20
8.68

(6.24)
145.36

(150.04)
0.97

15
9.76

(7.27)
127.98

(127.77)
1.25

10
12.31
(8.99)

107.38
(102.24)

4.50

Table 4.2: Initial velocity tilt, drift compression length, and deviation from the initially
specified beam current at the end of drift compression due to rematching at the beginning
of drift compression, as calculated by Hermes. Values in brackets are based on the g-factor
model (equations (4.11) and (4.12)).

The required head-to-tail velocity tilt of 8.68% to 12.31% is quite large though.

Although the final current profile at final focus is a flat-top with parabolic ends,

the current profile is close to parabolic for most of the drift compression system. Figure 4.9

shows the current profile at different locations along the drift compression section for a beam

with a 10 ns pulse duration at final focus. The current profile remains virtually unchanged

for most of the drift compression system, except near final focus (compare to figure 4.7).

We can compare the length of the drift compression section and the required initial

velocity tilt to simple estimates based on the g-factor model. From equations (3.1) and (3.7)

we find the longitudinal equation of motion

mγ3 dv

dt
= −g

qe

4πε0γ2

∂λ

∂z
. (4.3)

For a parabolic bunch of length ` at position zc, the line charge density is

λ = λ0
`i

`


1−

(
z − zc

1
2`

)2

 , (4.4)

in which λ0 is the initial line charge density at the beam center and `i is the initial bunch
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Figure 4.7: The current profile as a function of position, at the end of drift compression,
for different final pulse durations, if the beam is rematched at the beginning of drift com-
pression. The change in mean beam radius took place over 25 times the lattice half period
length at the end of drift compression.
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Figure 4.8: The initial velocity tilt with respect to the beam center, for 20 ns, 15 ns, and
10 ns final pulse durations.
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length. Substitution then gives

dv

dt
= 8g

qe

4πε0mγ5

z − zc

`2
λ0

`i

`
. (4.5)

If we approximate g to be a fixed number, instead of using equation (3.9), the right-hand-

side is linear in z. A parabolic bunch will then remain parabolic during compression. By

evaluating this equation at the beam ends, we find the equation of motion for the length of

the beam:

d2`

dt2
=

dv

dt

∣∣∣∣
z−zc=`/2

− dv

dt

∣∣∣∣
z−zc=−`/2

(4.6)

= 8g
qeλ0

4πε0mγ5

`i

`2
. (4.7)

In terms of the initial perveance Q0 at the beam center, we can rewrite this as

d2`

dz2
=

4gQ0

γ2

`i

`2
, (4.8)

using dz = v0dt, in which v0 is the velocity of the center of the beam. Integrating this

equation once gives

d`

dz
= −

√
8gQ0

γ2
`i

(
1
`f
− 1

`

)
, (4.9)

using that due to the space-charge repulsion the beam compression stagnates at the end of

drift compression, where the beam reaches its final bunch length `f. From this equation, we

find the initial velocity tilt required to compress the beam to a given final bunch length:

∆v

v

∣∣∣∣
i

=
d`/dt

dz/dt

∣∣∣∣
i

(4.10)

=

√
8gQ0

(
`i

`f
− 1

)
. (4.11)
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By integrating equation (4.9), we find the length Ldc of the drift compression section

Ldc =
`f

∆v/v

[
`i

`f
− 1 +

√
1− `f

`i
arcsinh

(√
`i

`f
− 1

)]
(4.12)

≈ `i − `f

∆v/v
for `i À `f. (4.13)

For the IRE design given in table 1.2, the charge per beam at the end of the accelerator is

4.6875 µC at a beam duration of 335 ns. For a parabolic bunch, the current at the beam

center is then 20.99 A. The backward Hermes calculation to set up the drift compression

lattice continued until the calculated current at the beam center reached this level. Note

that the total charge in a beam in the Hermes calculations presented above is somewhat

smaller than what is given in table 1.2 (3.90625 µC compared to 4.6875 µC) due to the

parabolic current fall-off near the ends of the beam. Consequently, for a fixed current level

of 20.99 A at the beam center, the beam duration at the beginning of drift compression is

somewhat smaller (280 ns) in the Hermes calculation. For consistency, the evaluation of

equations (4.11) and (4.12) used an `i corresponding to an initial beam duration of 280 ns,

whereas the perveance Q0 = 2.975 × 10−5 corresponds to an initial current at the beam

center of 20.99 A. For the g-factor, a fixed value of 1.27 was used, based on a beam radius of

17.9 mm. This is the average beam radius at the end of the accelerator, which is maintained

for most of the drift compression, until the beam expands transversely when approaching

the final focus section.

We can now calculate the initial velocity tilt and length of the drift compression

section using the simple g-factor model described above. Table 4.2 contains the initial

velocity tilt and the length of the drift compression section for final pulse durations of

20 ns, 15 ns, and 10 ns as estimated from equations (4.11) and (4.12), in addition to the



103

Hermes results. We find that the g-factor model underestimates the initial tilt by about

20% to 30%, whereas the length of the drift compression section is estimated correctly to

within 5% for the cases under consideration.

4.3 Sensitivity Studies

Now that we have the designs for an IRE drift compression, we can check their

sensitivity to various errors that may occur. Specifically, we will be looking at systematic

errors in the velocity tilt applied to the beam, as well as at random and systematic errors

in the initial beam current. Simulations starting with random errors in the longitudinal

velocity suffered from significant slice overtaking problems. This indicates that kinetic

effects are important in the dynamics of a beam with random velocity errors, and therefore

that a fluid model, on which Hermes is based, is inadequate to treat this problem. For the

sensitivity studies, the same numerical parameters were used as for the Hermes calculations

to set up a drift compression lattice (table 4.1).

4.3.1 Systematic Velocity Errors

First, we consider the effect of the initial head-to-tail tilt being too small by 1%.

In this case, the difference in longitudinal velocity between each slice boundary and the

center of the beam was reduced by 1%. The RMS error in the final beam current due to

this systematic error in the tilt is shown in table 4.3, together with the increase in the final

bunch length and the decrease in the current at the beam center for the three final bunch

durations under consideration. The effects of the error in the initial tilt are more severe if
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we aim for a shorter final pulse duration. Whereas the final bunch length increased by 4.5%

for a 20 ns final pulse duration, for the case of a 10 ns final pulse duration it increased by

10.3%. Similarly, the current at the beam center at the end of drift compression decreased

by 3.6% for a 20 ns final pulse duration, whereas the current decreased by 6.9% for the case

of a 10 ns final pulse duration. Figure 4.10 shows the final beam pulse for a 1% decrease in

the initial tilt for the case of a 10 ns final pulse duration.

Final beam
duration (ns)

RMS current
deviation (%)

Change in final
beam current (%)

Increase in
bunch length (%)

20 3.78 -3.56 4.46
15 5.15 -4.34 5.50
10 8.25 -6.94 10.28

Table 4.3: RMS deviation from the initially specified beam current at the end of drift
compression, if the initial head-to-tail velocity tilt is 1% too low.

4.3.2 Random Current Errors

Next, we consider the sensitivity of the IRE drift compression designs to random

errors in the initial current. A random error in the current can be expanded in spectral

components:

δI (z) =
∞∑

n=1

An cos
(
2πn

z

`
− φn

)
, (4.14)

in which ` is the length of the beam, and An and φn are random numbers. In practical

calculations, a limited number of terms N was used. The amplitude An had a Gaussian

distribution with a standard deviation fI
√

2
N , in which I is the beam current and f is the

fractional error we want to impose on the beam current in the simulation. The phase angle

φn is a random variable with a uniform distribution between 0 and 2π. At any position z

along the beam, the standard deviation of the error in the current is then fI, independent
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Figure 4.10: The current profile at the end of drift compression, as a function of position,
for the case of a 10 ns final pulse duration if the initial head-to-tail velocity tilt is 1% too
low.
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Final beam
duration (ns)

RMS current
deviation (%)

20 2.4± 0.9
15 3.0± 1.9
10 6.0± 2.5

Table 4.4: RMS deviation from the initially specified beam current at the end of drift
compression, due to 1% RMS random errors in the initial current.

of the number of terms N that are taken in the sum. In the simulations presented here,

N = 10 terms were used in the sum, with a fractional error f = 1%. Instead of imposing an

error on the current (which is a derived quantity in Hermes) directly, the charge in each slice

was given a random error based on the prescription given above. As before, the effects of

this error on the final beam pulse was measured by calculating the RMS current deviation.

Table 4.4 lists the RMS current deviation that was found for the three drift com-

pression systems that are being considered. Each case was repeated ten times to find the

average and the standard deviation of the RMS current deviation at the end of drift com-

pression. Note that the errors listed in table 4.4 include the error due to rematching at

the beginning of drift compression. Beams with different final pulse durations are affected

similarly by the random error in the initial current. The RMS current deviation at the

end of drift compression increased from 1.0% to 2.4% for the case with a 20 ns final pulse

duration, and from 4.5% to 6.0% for the case with a 10 ns final pulse duration. The spread

in the RMS current deviation is smallest for the case of a 20 ns final pulse duration (0.9%),

and largest for the case of a 10 ns final pulse duration (2.5%). Figure 4.11 shows an example

of the final beam pulse for a 10 ns final pulse duration beam, in which a 1% random current

variation was applied initially. The current profile shows local deviations from the initially

specified final beam pulse, but the overall current profile is not affected.
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of position, for a 10 ns final pulse duration, if the initial current has a 1% random error.
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4.3.3 Systematic Current Errors

Finally, we consider the sensitivity of the IRE drift compression designs to a small

systematic error in the initial beam current. To study the effects of this error, the charge

in all the beam slices was reduced by 1%. In the calculation of the RMS current deviation,

the final beam current profile was compared to the initially specified final beam current,

multiplied by 0.99. Table 4.5 lists the RMS current deviation that was found for the three

drift compression systems that are being considered. The RMS current deviation does not

significantly increase in any of the cases, particularly for shorter final pulse durations. For

the case with a 20 ns final pulse duration, the RMS current deviation increased from 0.97%

due to rematching alone, to 1.32% if we include the systematic current error. For the case

with a 10 ns final pulse duration though, the RMS current deviation deviation is 4.50%

with and without the systematic current error. Figure 4.12 shows the final beam pulse for

a beam with a 10 ns final pulse duration.

Final beam
duration (ns)

RMS current
deviation (%)

20 1.32
15 1.36
10 4.50

Table 4.5: RMS deviation from the initially specified beam current multiplied by 0.99, at
the end of drift compression, if the initial current is too low by 1%.
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Figure 4.12: The current profile at the end of drift compression, as a function of position,
for a 10 ns final pulse duration, if the initial current is too low by 1%.
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Chapter 5

The IRE Final Focus System

In the previous chapter, we described how a beam at the end of the IRE accelerator

can be compressed longitudinally in order to increase the energy deposition rate on target.

In this chapter, several IRE final focus systems are discussed that focus the beam onto

a small spot on the target. We will be particularly interested in how space-charge and

third-order aberrations affect the beam quality and the achievable spot size.

Usually, in the final focus system the beam is first expanded transversely before it

is focused onto a small spot. The transverse expansion increases the force exerted by the

final focus lenses on the beam, which is proportional to the beam radius as shown by the

envelope equations (2.44), (2.45). To achieve a small spot size, it is desirable to use a large

convergence angle to focus the beam onto a spot.

As the beam expands, the paraxial approximation becomes less valid, and geo-

metric as well as fringe field aberrations may become significant. In addition, space-charge

nonlinearities may affect the beam quality, as discussed in section 6.1.1. Third order aber-
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rations become more severe as the convergence angle increases. It has been proposed pre-

viously [48] to use octupoles to correct for third-order aberrations in final focus. However,

we may be able to reduce the spot size by rematching the final focus lenses, if we take the

effects of the third-order aberrations into consideration. In this chapter, an IRE final focus

system was used as an example to demonstrate rematching of the final focus system. The

effects of third-order aberrations were analyzed for different values of the convergence angle,

as well as the effectiveness of rematching the final focus system to reduce the spot size.

5.1 Design of a Final Focus System

Each beam in the preliminary IRE design has a charge of 4.6875 µC, at an energy

of 200 MeV, as shown in table 1.2. For the final focus designs discussed here, we will assume

that the beam is compressed to a duration of 5 ns with a flat beam profile. This corresponds

to a perveance of 1.33×10−3 in the final focus system. To focus such high-perveance beams,

partial or complete neutralization of the beam charge is required following the final lens.

For the final focus designs presented here, the beam was assumed to be neutralized to 98%

of its initial perveance 10 cm after the last magnet. In the simulation, this was done by

reducing the charge of each macroparticle by 98%.

The standoff distance between the end of the last magnet and the focal spot was

chosen to be 2 m. For the simulations presented here, the convergence angle was calculated

at the neutralization point. For a given final spot radius, we can integrate the envelope

equation (2.44), (2.45) backward from the final focus spot to the neutralization point,

assuming a round beam, to find the convergence angle.
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Given the perveance of the beam before neutralization Q = 1.33 × 10−3, and

choosing the average beam radius in the final focus system to be a = 6 cm, we can find the

lattice half period L from equation (2.60). For the phase advance per period, σ0 = 53.77◦

was used, which corresponds to its value in the IRE accelerator. This yields a half-lattice

period of 0.902 m. Once we know the half lattice period and using a value of 65% for

the occupancy η, which is near its practical achievable limit, we can set up a lattice system

consisting of four quadrupoles. The initial beam parameters a, b, a′, b′ were chosen such that

they correspond to the matched conditions for a beam propagating in the lattice with the

given phase advance σ0 and an average beam radius of 6 cm. This means that the beam at

the beginning of the final focus system resembles a beam coming out of a transport section

or the drift compression section.

Using the initial beam parameters, we can find the quadrupole strengths that

match the beam to the final beam parameters at the neutralization point that are needed

to achieve a given spot size. A Python script, based on JavaEnvelope, was written for this

purpose. We then have a final focus system to converge a beam coming out of a transport

section onto a spot with a given radius. Figure 5.1 shows the focusing solutions that were

found for convergence angles between 10 to 20 mrad, whereas the corresponding magnetic

field gradients of the four quadrupoles are shown in figure 5.3.

5.2 Third-Order Aberrations

The final focus system described above focuses a beam onto a spot with a given

radius in the absence of nonlinearities, such that the envelope equations (2.44), (2.45) are
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Figure 5.1: The focusing solutions for different values of the convergence angle, as calculated
from the envelope equations. Continued on next page.
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Figure 5.2: Continuation of figure 5.1.

valid. In this approximation, for a given standoff distance of 2 m, the final spot size decreases

if the convergence angle is increased. The final spot size as a function of the convergence

angle, as calculated from the envelope equations, is shown in figure 5.4.

Nonlinear space-charge fields or aberrations may cause an increase in the final spot

size. As the convergence angle increases, the effects of third-order aberrations become more

severe. Therefore, for large convergence angles we expect the final spot radius to increase.

An optimal convergence angle will then exist for which the final focus spot size, in the

presence of nonlinear space charge and third-order aberrations, is minimized.

The transverse dynamics of a beam was simulated with the WARPxy code, in-

cluding nonlinear space-charge and third-order aberrations, for different values of the con-

vergence angle. In these simulations, we assumed the quadrupoles to have fringe fields of

the shape given by equation (2.73), with a fringe length Lff = 15 cm. Table 5.1 lists the

simulation parameters. The beam was surrounded by a circular conducting pipe, whose
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Figure 5.3: The magnetic field gradients of the four quadrupoles as a function of the con-
vergence angle, as calculated from the envelope equations.
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Figure 5.4: The focal spot radius as a function of the convergence angle, as calculated from
the envelope equations.



117

Initial distribution K-V or semi-Gaussian
Number of particles 40,000 (none lost in any of the simulations)
Grid size 128× 128

Step size
1 mm inside quadrupoles and their fringes
1 cm elsewhere

Table 5.1: Simulation parameters for the IRE final focus simulations.

radius was chosen according to the heuristic [28]

pipe radius = 1.25×maximum beam radius + 5 mm, (5.1)

The grid size was then chosen such that this pipe just fits inside the grid. By choosing a

circular conducting boundary at a sizeable distance from the beam, we can avoid any image

charges significantly affecting the beam.

Figure 5.5 shows the focal spot radius as a function of the convergence angle that

was found from the WARPxy simulations, both for an initially semi-Gaussian beam and

for a K-V beam. The spot radius was calculated from rspot =
√

ab. It is significantly

larger than what is predicted by the envelope equation, particularly for large convergence

angles. The minimum spot radius is achieved for a convergence angle of 16 mrad. The

spot radius increases for larger convergence angles due to the third-order aberrations. Since

the difference between the initially semi-Gaussian beam and the K-V beam is small, we

conclude that space-charge nonlinearities are not important for the IRE final focus designs

presented here.

Figure 5.6 shows the horizontal and vertical beam radius that was found from the

WARPxy simulations. Due to the third-order aberrations, the beam is no longer circular

at the target. This suggests that if third-order aberrations are included, the quadrupoles



118

Envelope

WARPxy, K-V

WARPxy, semi-Gaussian

 10  15  20
 0

 5

 10

Convergence angle (mrad)

S
po

t r
ad

iu
s 

(m
m

)

Figure 5.5: The focal spot radius as a function of the convergence angle, as calculated from
the envelope equations, and from WARPxy simulations, taking into account third-order
and space-charge aberrations. Note that the final spot radius is virtually independent of
the initial distribution being K-V or semi-Gaussian.
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are no longer optimally tuned. We expect therefore to be able to improve on the final spot

size by readjusting the quadrupoles.

5.3 PIC Code Rematching

In this section, we will discuss how to find the optimal quadrupole strengths,

including the nonlinear effects that are captured by a PIC simulation. We are looking for

a set of quadrupole field strengths that focus the beam unto a round spot at the target

position, with a′ = b′ = 0, for a given convergence angle θ0 at the neutralization point.

Effectively, this problem reduces to finding the root of the set of four equations

y = f (x) , (5.2)

in which y = (θ − θ0, a− b, a′, b′), x is a vector that holds the magnetic field gradients of

the four quadrupoles, and f represents a WARPxy simulation. In this equation, a, b, a′,

b′ are evaluated from the simulation data at the target position, and θ ≡ 1
2 (a′ + b′) is the

convergence angle at the neutralization point that was found from the simulation.

The algorithm to solve this equation is based on the Newton-Raphson method [80].

Whereas in one dimension the derivative of the function f is used to find its zero, in more

than one dimension we make use of the Jacobian matrix Jij = ∂fi/∂xj . We can then expand

f in a Taylor series:

f (x + δx) = f (x) + J · δx + O (δx)2 . (5.3)

We can solve f (x + δx) = 0 by neglecting the O (δx)2 term:

−f (x) = J · δx (5.4)
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Figure 5.6: The horizontal and vertical beam radius as calculated from the WARPxy simu-
lations, for different values of the convergence angle, using the magnetic field gradients that
were found from the envelope equations. For clarity, the quadrupoles are drawn closer to
the beam than they were in the simulations. Continued on next page.
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Figure 5.7: Continuation of figure 5.6.

and solving this linear set of equations for δx. Based on an original estimate xorig of the

zero of f (x), we now have a new estimate xnew = xorig + δx in which δx is given by

δx = −J−1 · f (x) (5.5)

By iterating this equation, and reevaluating the Jacobian matrix J on each iteration step,

we can converge to a zero of f (x). Convergence is not guaranteed though. It depends on

the existence of a zero of f (x), as well as the starting point of the iteration xorig.

If the initial guess xorig is in a region where the function f (x) varies rapidly, a step

δx based on a first-order Taylor expansion may produce an xnew whose error, as measured

by the difference between f (xnew) and zero, may actually be larger than the original error.

In those cases, the iteration step is repeated in the same direction as the first step, but

with a smaller step size. The new step size is found by fitting a parabola to the function

f (x) along the direction of the step, using the function value and the derivative at xorig

and the function value at xnew. This avoids taking steps that increase the error, as well as
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evaluating the Jacobian matrix anew.

Appendix A.2 contains the Python script in which this algorithm was implemented.

First one WARPxy simulation was done using the magnetic field gradients that were found

from the envelope equations. This gives the initial error f
(
xorig

)
. The Jacobian matrix

was calculated by varying the magnetic field gradient of each of the magnets separately,

and finding the effect on y = (θ − θ0, a− b, a′, b′) by running a WARPxy simulation. Four

WARPxy simulations are needed to find the Jacobian matrix. Equation (5.5) was then

used to find the next set of magnetic field gradients. This procedure converges rapidly for

small values of the convergence angle (θ . 14 mrad), whereas it converges very slowly for

larger convergence angles. To save time, many of the iteration sequences were done for a

small number of particles and a large step size initially, starting from many different initial

conditions, and gradually improving the accuracy of the simulation when x approaches the

solution. The final simulation parameters correspond to those given in table 5.1.

Figure 5.8 shows the beam radius at the target position as a function of the

convergence angle, after rematching the quadrupoles using WARPxy. Figure 5.9 shows

the corresponding magnetic field gradients. For convergence angles less than 16 mrad, a

significant improvement in spot radius was achieved by rematching. For larger convergence

angles, the requirement of having an equal horizontal and vertical beam radius at the target

position in the rematching algorithm actually produces a larger spot size than without

rematching. For a convergence angle of 17 mrad, halo formation causes a significant number

of particles to be lost, if we require the horizontal and vertical beam radius to be equal. The

solution for 17 mrad shown in figure 5.8 was achieved by increasing the aperture by 22%
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to avoid particle loss. Note that no particles were lost for any of the convergence angles in

the simulations without rematching of the final focus system.

To understand why particles are being lost, we can look at the focusing solutions

that were found by rematching using WARPxy. Figure 5.10 shows that focusing solutions

that were found for convergence angles between 10 and 16 mrad. Whereas for low conver-

gence angles the focusing solution is close to what was found using the envelope code (see

figure 5.1), at 16 mrad the horizontal and vertical beam radii deviate significantly from what

was found using the envelope equations. A much larger excursion is needed for the horizon-

tal beam radius, which means that aberrations affect the beam more strongly. Figure 5.11

shows the focusing solution for a 17 mrad convergence angle. In this case, the excursion in

the horizontal beam radius became so large as to make a larger aperture necessary.

Figures 5.12 and 5.13 show the positions of the beam particles in configuration

space at the target position for the different convergence angles after rematching. For a

convergence angle of 16 mrad or larger, the focal spot is no longer uniform. We can conclude

that while rematching provides a smaller spot size at low convergence angles, at larger

convergence angles rematching does not significantly improve the final spot characteristics

due to halo formation.
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Figure 5.8: The focal spot radius as a function of the convergence angle, as calculated from
the envelope equations, and from WARPxy simulations, after rematching the magnetic
field gradients of the quadrupoles using WARPxy. For the rematched solution at a 17 mrad
convergence angle, the aperture was increased by 22% to avoid particle loss. Note that
the final spot radius is virtually independent of the initial distribution being K-V or semi-
Gaussian.
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Figure 5.9: The magnetic field gradients of the four quadrupoles as a function of the con-
vergence angle, after rematching using WARPxy.
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Figure 5.10: The horizontal and vertical beam radius as calculated from the WARPxy
simulations, for convergence angles between 10 and 16 mrad, after rematching the magnetic
field gradients of the quadrupoles using the WARPxy code.



127

Quad Quad Quad Quad

98
%

 n
eu

tr
al

iz
at

io
n

Ta
rg

et
 p

os
iti

on

Horizontal

Vertical

Convergence angle = 17.0 mrad

0 1 2 3 4
0

 50

 100

 150

 200

Distance along the optical axis (m)

B
ea

m
 r

ad
iu

s 
(m

m
)

Figure 5.11: The horizontal and vertical beam radius as calculated from the WARPxy
simulations, for a 17 mrad convergence angle, after rematching the magnetic field gradients
of the quadrupoles using the WARPxy code.
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Figure 5.13: Continuation of figure 5.12.



130

Chapter 6

The Scaled Final Focus Experiment

In the Scaled Final Focus Experiment, the beam parameters and the focusing

lattice parameters were scaled such that the relative importance of the various terms in the

envelope equations (2.44), (2.45) is maintained. By scaling the HIBALL-II parameters such

that all of the physical dimensions length are reduced by a factor of 10 while the perveance

is fixed (as described in section 1.4.3), we find a corresponding beam current of 96.5 µA, an

edge emittance of 3 π mm mrad, and an ion energy of 160 keV for the scaled experiment [72].

These beam parameters are achieved in the experiment by aperturing the beam coming

from the source. Since the size of the aperture determines both the beam current and the

emittance, the scaled HIBALL-II beam parameters can only be achieved in approximation.

The scaled HIBALL-II case as well as the modified scaled HIBALL-II case discussed below

are close to the scaled HIBALL-II current, whereas an additional case with a larger initial

current was done in order to perform beam neutralization experiments [69], [72].

Since detailed measurements have been performed on the Scaled Final Focus Ex-
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periment [72], simulations of this experiment is an opportunity for model verification. By

comparing experimental and simulation results, the degree to which WARP replicated the

experimental reality can be assessed. Special attention was given to nonideal effects present

in the experiment, such as fringe fields and image fields. Our knowledge of these effects

is often limited. By including some nonideal effects in the simulations though, it can be

shown which of them are likely to significantly affect the beam, and which are not.

In the experiment, the beam was often significantly rotated in configuration space

after the magnetic section, whereas the beam had been upright after the electrostatic sec-

tion. Several possible causes of this beam rotation have been proposed, such as quadrupole

rotations, the Earth’s magnetic field, and asymmetries in the leads to the focusing mag-

nets. Comparisons between simulation and experiment are difficult as long as the true cause

of the beam rotation is not identified, and either solved in the experiment or included in

the simulation. A series of beam rotation experiments and simulations were performed to

address this issue.

The simulations were performed using the WARPxy transverse slice particle-in-

cell code, taking the magnitude of the quadrupole strengths as well as the initial beam

parameters from the experiment. In many cases, possibly due to the beam rotation de-

scribed above, or due to uncertainties in the measured beam current or initial emittance,

the envelope found in the simulation did not exactly agree with the experimentally mea-

sured envelope. In those cases, the quadrupole strengths were rematched in the simulation

in order to resemble the experimentally measured beam envelope more closely.

To accurately replicate the effect of image charges, particular attention was given to
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the presence of conducting boundaries in the experiment. Since WARP uses a sine-transform

instead of the regular Fourier transform to solve Poisson’s equation, a beam is by default

effectively surrounded by a conducting rectangular box of the size of the grid. Due to the lack

of symmetry of such a rectangular box, its image charges may significantly affect the beam

dynamics if it is not shielded by other conducting boundaries. The electrostatic quadrupoles

in the Scaled Final Focus Experiment consist of four half-rods, and were modeled as such

in the simulation (figure 6.1). Whereas the axial ends of the half-rods were rounded in

the experiment [94], they were modeled as hard edges in the simulations. The magnetic

quadrupoles have a metallic liner on their inside, which is represented as a conducting

circular boundary in the simulation. In the drift spaces between the quadrupoles, the

only conducting surfaces near the beam in the experiment are the diagnostic paddles at a

distance of about 10 cm, followed by the vacuum tank in which the beam travels. Since these

conducting boundaries are so far removed from the beam, any image charges on them have

a negligible effect on the beam. In the simulations, the transverse extent of the conducting

boundaries in the drift spaces are therefore represented by a large circular boundary that

just fits on the grid.

In some of the simulations presented here, the lowest order nonlinearities due to

fringe fields were included. In those simulations, a 1 mm step size was used inside the

quadrupoles and their fringes, compared to a 1 cm step size outside these regions.

Other nonlinear fields may arise from the current leads into the magnets, and

higher order multipoles that may exist in superposition to the quadrupolar field of the

focusing elements. These effects have not been taken into consideration in the simulations
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Figure 6.1: The conducting boundary of an electrostatic quadrupole in the Scaled Final
Focus Experiment. The area shown corresponds to the grid size used in the simulation.
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presented here. Furthermore, the initial beam distribution was taken to be either K-V or

semi-Gaussian, which may not accurately reflect the initial distribution of the beam in the

experiment.

6.1 The Scaled HIBALL-II Case

For the scaled HIBALL-II case, the focusing strengths of the magnetic quadrupoles

in the HIBALL-II design were scaled down to find their corresponding values for the ex-

periment. The focusing strengths thus found were subsequently adjusted in the experiment

to minimize the size of the focal spot. Figure 6.2 shows the beam envelope in the Scaled

Final Focus Experiment for the scaled HIBALL-II case. It has a beam envelope shape in

the magnetic section that corresponds most closely to the HIBALL-II focusing scheme. The

purpose of the electrostatic section is to match the beam into the magnetic section, which

is the actual scaled HIBALL-II final focus system. Since for this case, the beam radius in

the electrostatic section is much smaller than the aperture of the electrostatic quadrupoles,

they are not included in the simulation as their effect on the beam will be negligible. This

allowed a smaller extent of the grid, and therefore a higher accuracy of the simulation for

a given number of grid cells.

In the experiment, the scaled HIBALL-II case was plagued by an anomalously

large emittance growth by factors of about six [71]. One of the goals of the simulations of

the Scaled Final Focus Experiment was to investigate some of the possible causes of this

anomalous emittance growth.

In the experiment, the beam was apertured at D1 in order to get a beam with the
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Figure 6.2: The Scaled Final Focus Experiment. The beam envelope shown corresponds to
the scaled HIBALL-II case.

appropriate current and emittance. The simulations for the scaled HIBALL-II case started

from this aperture, assuming a semi-Gaussian distribution initially. In order to guarantee

convergence, several simulations with different numbers of particles, grid cell size, and step

size have been performed, with 40,000 particles on a 128 × 128 grid with a 1 cm step size as

the baseline case. For the cases that included fringe fields, a 1 mm step size was used inside

the quadrupoles and their fringes. All cases used spatial filtering and fourfold symmetry to

solve for the field. The beam parameters are given in table 6.1, whereas table 6.2 lists the

focusing lattice properties. Figure 6.3 shows the beam envelope, the extent of the grid, and

the location of conducting boundaries in the simulation as a function of the longitudinal

distance. The simulations and their results are summarized in table 6.3.

Figure 6.4 shows the horizontal and vertical beam radius calculated from the PIC

simulation. Figure 6.5 shows the calculated emittance of an initially semi-Gaussian beam

as a function of the longitudinal distance traveled, whereas figure 6.6 shows the calculated

emittance for a K-V beam. The emittance of an initially semi-Gaussian beam increases by
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Beam energy 160 keV
Initial edge emittance 0.996 π mm mrad
Beam current 87 µA
Initial beam parameters a0 = b0 = 1.5 mm; a′0 = b′0 = 0.

Final focus spot size (from envelope calculation) 0.207 mm2

Table 6.1: Beam parameters for the scaled HIBALL-II case.

Quadrupole center
locations (m)

Quadrupole
lengths (m)

Field
gradient

Aperture (cm)

0.0745 0.102 0. 2.54
0.2275 0.102 995 kV/m2 2.54
0.3805 0.102 12592 kV/m2 2.54
0.5335 0.102 -22909 kV/m2 2.54
0.6865 0.102 13987 kV/m2 2.54
0.8395 0.102 0. 2.54
0.9925 0.102 0. 2.54
1.1455 0.102 0. 2.54
1.2985 0.102 0. 2.54
1.4515 0.102 0. 2.54
3.3039 0.4 1.222 T/m 1.91
4.0034 0.4 -2.348 T/m 2.54
4.7069 0.4 1.365 T/m 2.54
6.4299 0.4 1.586 T/m 3.18
7.1919 0.717 -1.734 T/m 3.18
7.9279 0.351 2.628 T/m 1.91

Table 6.2: Lattice properties for the scaled HIBALL-II case.
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Figure 6.3: The horizontal and vertical beam envelope, extent of the grid, and the location
of the conducting boundaries in the simulation of the scaled HIBALL-II case.
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Initial distribution
Number of
particles

Grid size
Step

size (cm)

Maximum
emittance √εxεy

(π mm mrad)

Spot
area

(mm2)

Semi-Gaussian
40,000

(116 lost)
128 × 128 1. 1.422 0.291

Semi-Gaussian
80,000

(220 lost)
128 × 128 1. 1.417 0.290

Semi-Gaussian
10,000

(27 lost)
64 × 64 1. 1.510 0.317

Semi-Gaussian
160,000

(460 lost)
256 × 256 1. 1.391 0.278

Semi-Gaussian
40,000

(72 lost)
128 × 128 0.5 1.425 0.282

K-V
40,000

(none lost)
128 × 128 1. 1.026 0.202

Table 6.3: Simulation results for the scaled HIBALL-II case.

42%, while a K-V beam suffers no significant emittance increase. Comparing these figures

shows that the emittance starts to increase in the drift space between the electrostatic

section and the magnetic section, where the beam expands transversely. Note that the

emittance decreases sharply as the beam converges onto the focal spot. The initial decrease

in the emittance is due to a softening of the hard edge of the semi-Gaussian distribution in

configuration space as the initially Gaussian distribution of the transverse velocity is mapped

to configuration space. This is a commonly observed feature both in simulations starting

with a semi-Gaussian distribution [97] and in experiments [9]. The emittance growth leads

to an spot area increase of 55%. We can attribute the emittance growth to space-charge

nonlinearities, since it does not occur for a K-V beam, which has a linear space-charge force.

Figures 6.7 and 6.8 show the sheared x−x′ and y−y′ phase space of the beam just

before the first magnetic quadrupole, at the end of the expansion drift section. From these

phase space plots, we see that the emittance increase is not due to a uniform expansion
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Figure 6.4: The horizontal and vertical beam radius of an initially semi-Gaussian beam as
a function of the longitudinal distance traveled, for the scaled HIBALL-II case.
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Figure 6.5: The edge emittance of an initially semi-Gaussian beam as a function of the
longitudinal distance traveled, for the scaled HIBALL-II case.
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Figure 6.6: The edge emittance of a K-V beam as a function of the longitudinal distance
traveled, for the scaled HIBALL-II case.
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Figure 6.7: Sheared x−x′ phase space at the end of the expansion drift section, just before
the first magnetic quadrupole, for the scaled HIBALL-II case.

of the area of the beam in phase space. Rather, the emittance increase is manifested as

distortions near the beam edge.

6.1.1 Emittance Growth of Expanding Charged Particle Beams

The emittance growth seen in the simulation is related to the expansion of the

beam between the electrostatic and the magnetic section. The emittance growth of a freely
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Figure 6.8: Sheared y− y′ phase space at the end of the expansion drift section, just before
the first magnetic quadrupole, for the scaled HIBALL-II case.
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expanding beam can be calculated in general if we resort to dimensionless parameters.

In this derivation, we make use of the paraxial approximation. The equation of

motion for a charged particle of mass m and charge qe in a freely expanding beam in this

approximation is

mγ (βc)2 ~r ′′ =
1
γ2

qe ~E, (6.1)

The electric field ~E (~r) at position ~r can be calculated from Gauss’s law as

~E (~r) =
λ

2πε0

∫
~r − ~r1

|~r − ~r1|2
n (~r1) d2~r1, (6.2)

in which n (~r) is the normalized beam density:

∫
n (~r) d2~r = 1. (6.3)

The equation of motion then becomes

~r ′′ = Q

∫
~r − ~r1

|~r − ~r1|2
n (~r1) d2~r1. (6.4)

in which Q is the perveance as defined by equation (2.34).

In order to draw general conclusions about beam expansion, we need to write

this equation in dimensionless units. Normalizing the particle position to the initial beam

radius a0:

~ρ =
~r

a0
, (6.5)

and defining a dimensionless longitudinal distance ζ:

ζ =
z

a0

√
Q, (6.6)

the equation of motion becomes

d2~ρ

dζ2
=

∫
~ρ− ~ρ1

|~ρ− ~ρ1|2
ν (ρ1) d2~ρ1, (6.7)
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in which the dimensionless transverse density ν (~ρ) is given by ν (~ρ) d2~ρ = n (~r) d2~r. This

equation implies that the distribution of ~ρ (ζ) depends only on the initial distribution of ρ

and dρ/dζ.

Assuming that the initial distribution of the beam is semi-Gaussian:

f0

(
~r, ~r ′

)
=

2
π2ε2

0

θ

(
1− ~r 2

a2
0

)
exp

[
−1

2

(
2a0~r

′

ε0

)2
]

, (6.8)

in which ε0 is the initial edge emittance of the beam, the initial distribution in its normalized

form depends on one independent parameter µ only:

φ0

(
~ρ,

d~ρ

dζ

)
=

µ2

2π2
θ
(
1− ~ρ 2

)
exp

[
−1

2
µ2

(
d~ρ

dζ

)2
]

, (6.9)

in which µ is given by

µ =
2a0

ε0

√
Q. (6.10)

This parameter describes the ratio between the self-repulsion of the beam due to its space

charge, and the beam pressure due to its emittance.

The initial beam distribution represents a one-parameter family of initial condi-

tions, whereas the equation of motion (6.7) does not contain any explicit parameters. We

conclude that the beam distribution in dimensionless units at longitudinal distance ζ, if

semi-Gaussian initially, will depend on the parameter µ only.

We can estimate the beam radius and emittance from second order moments over

the distribution function. The beam radius a(z) is given by

a =
√

2 〈~r 2〉. (6.11)

in which the factor
√

2 is chosen such that a(z = 0) = a0. In dimensionless units, we can
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write this as

α ≡ a

a0
=

√
2 〈~ρ 2〉. (6.12)

The edge emittance for a cylindrically symmetric beam can be calculated as

ε2 = 4
[〈

~r 2
〉 〈

~r ′2
〉− 〈

~r · ~r ′〉2
]
. (6.13)

In normalized units, we can write this as

ε

ε0
= µ

√√√√〈~ρ 2〉
〈(

d~ρ

dζ

)2
〉
−

〈
~ρ · d~ρ

dζ

〉2

. (6.14)

Since the equation of motion, and therefore the phase space density, depends on the longitu-

dinal distance ζ and the parameter µ only, the right-hand-side of this equation is a function

of those two parameters only:

ε

ε0
= F (ζ; µ) . (6.15)

We can find the function F (ζ; µ) by performing particle-in-cell simulations of expanding

semi-Gaussian beams for different values for the parameter µ and plotting the relative

emittance increase. For µ much larger than unity, the beam is cold, leading to self-similar

expansion, for which the emittance is constant [65]. For µ much smaller than unity, the

space-charge self-repulsion is small compared to the internal beam pressure (emittance), so

the nonlinear space-charge forces driving the emittance growth are also small. We expect

the emittance to increase significantly for µ of order unity.

Figure 6.9 shows the emittance increase as a function of the normalized distance

ζ as calculated by WARPxy. Again the initial decrease in the RMS emittance is due to a

softening of the hard edge of the semi-Gaussian distribution in configuration space, and can
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be avoided by allowing the semi-Gaussian beam to relax in an alternating-gradient focusing

lattice before expansion.

Unlike a K-V distribution, for which the emittance remains constant, the emittance

of an initially semi-Gaussian beam increases linearly for large ζ. No saturation of the emit-

tance increase is observed. The linear part of the emittance increase can be parameterized

as

dε/ε0

dζ
= 0.114 exp

[
−

(−1.52 + lnµ

2.07

)2
]

. (6.16)

This function is drawn in figure 6.10, together with the slopes found in the simulations for

different values of µ.

The transverse Debye length of a beam with particle density n at temperature T

is given by

λD = γ

√
ε0T

n (qe)2
=

ε

2
√

Q
. (6.17)

In terms of the initial beam radius a0, we can write this as

λD

a0
=

1
µ

ε

ε0
=

F (ζ; µ)
µ

, (6.18)

using equation (6.15). Again this ratio depends on the parameters µ and ζ only. We can

use the Debye length in normalized units as a scale length to describe distortions in phase

space that occur in expanding charged particle beams.

Figure 6.11 shows the sheared phase space of an expanding beam, initially semi-

Gaussian, with µ = 5.0 after traveling a longitudinal distance ζ = 10.0. In sheared phase

space, the particle divergence angles are corrected for the average beam divergence angle

at the particle location:

δ

(
dρ

dζ

)
=

dρ

dζ
− dα

dζ

ρ

α
. (6.19)
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Figure 6.9: Relative emittance increase F (ζ;µ) in WARPxy particle-in-cell simulations of
expanding beams, using 40,000 macroparticles on a 128 × 128 spatial grid with fourfold
symmetry, and 100 time steps. The beam current was 87 µA, the beam energy 160 keV,
the initial beam radius was 1.499 mm, while the initial emittance is chosen to match the
values of µ shown for each case. The initial distribution is semi-Gaussian.
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Figure 6.10: The slope ∂F (ζ; µ) /∂ζ of the linear part of the emittance increase in figure
6.9 as a function of µ, as parameterized by equation (6.16), as well as the slopes found in
the simulation for different values of µ.
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The sheared phase space plot shows that the emittance increase observed occurs near the

beam edge. Due to the Gaussian tail that develops in the particle distribution in configura-

tion space, less current is enclosed near the beam edge than in case of a uniform beam. The

repulsive space-charge force near the beam edge is therefore smaller than in case of a uni-

form beam, causing particles there to have a comparatively smaller expansion velocity. As

a result, the ellipse in phase space becomes distorted as shown in figure 6.11. The width of

the tail that develops in sheared phase space is several Debye lengths wide. Since F (ζ; µ) is

a linear function of ζ for large ζ, whereas the beam radius α increases faster than linear, we

conclude from equation (6.18) that the Debye length and therefore the tail width decrease

with respect to the beam radius during expansion.

In the case shown in figure 6.11, the tail that is formed in the expansion contains

about 10% of the beam particles. To assess its effect on the final spot size, we changed the

sign of the beam divergence to let the beam converge to a spot. Changing the sign of the

beam divergence does not alter the phase space plot as shown in figure 6.11. After letting

the beam converge to a spot, it turned out that 76.3% of the particles were inside the initial

beam radius a0, as compared to 98.4% for a K-V beam. So we conclude that the tail formed

in the phase space of an expanding charged-particle beam has a significant effect on the

achievable spot size.

6.1.2 Fringe Field Effects

Although the simulations indicate that a significant emittance increase will occur

due to space-charge nonlinearities, the emittance increase found in the experiment is much

larger. Since no significant emittance increase was found in simulations starting with a K-V
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Figure 6.11: Sheared phase space of an expanding beam with µ = 5.0 after traveling a
longitudinal distance ζ = 10.0 in dimensionless units. The radial distance and the angle are
both shown in dimensionless units. This simulation was done using the WARPxy particle-
in-cell code, using 40,000 macroparticles on a 128 × 128 spatial grid with fourfold symmetry,
and 100 time steps. The beam current was 87 µA, the beam energy 160 keV, the initial
beam radius was 1.499 mm, while the initial emittance was 1.91 π mm mrad, such that
µ = 5.0. The initial distribution is semi-Gaussian.
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distribution, it is unlikely that nonlinear image charges (which were already included in

these simulations) play a significant role. Third-order aberrations in the form of nonlinear

fringe fields represent another possible cause of emittance growth.

In the simulations presented here, the fringe fields were assumed to have the shape

shown in figure 2.1, centered around the nominal magnet ends, with a fringe length equal

to the element apertures given in table 6.2. As described in section 2.4.1, the lowest-order

nonlinearities in fringe fields generated by the longitudinal variation of the quadrupolar field

consist of a pseudo-octupole field and a longitudinal field. For the electrostatic/magnetic

quadrupoles, these components correspond in equations (2.9)–(2.11)/(2.12)–(2.14) to the

e/b2,1 (z) term and the e/b′2,0 (z) term respectively, where the prime denotes a derivative

with respect to the longitudinal coordinate z.

Figure 6.12 shows the emittance as a function of the longitudinal distance traveled

for a beam with an initially semi-Gaussian distribution, if we include both the pseudo-

octupole field e/b2,1 (z) and the longitudinal field e/b′2,0 (z). We see that spikes occur in the

emittance, in which the emittance rapidly increases and equally fast decreases by approxi-

mately the same amount. In those locations, the x − x′ and y − y′ phase space is heavily

distorted into an s-shape, and rapid changes in the width of s-shape result in significant,

though transient, changes in the emittance. The presence of nonlinear fringe fields causes a

negligible increase in the overall emittance growth. We find a similar effect for a beam that

starts with a K-V distribution (figure 6.13). Again short spikes occur in the emittance, but

the overall emittance increase is small as in the case without fringe fields.

At first sight, it may be surprising that the phase space area would increase so
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Figure 6.12: The edge emittance of an initially semi-Gaussian beam as a function of the
longitudinal distance traveled, for the scaled HIBALL-II case. This simulation included
both the pseudo-octupole e/b2,1 (z) and the longitudinal field e/b′2,0 (z) caused by the fringe
fields of the electrostatic/magnetic quadrupoles.
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Figure 6.13: The edge emittance of an initially K-V beam as a function of the longitudinal
distance traveled, for the scaled HIBALL-II case. This simulation included both the pseudo-
octupole e/b2,1 (z) and the longitudinal e/b′2,0 (z) field caused by the fringe fields of the
electrostatic/magnetic quadrupoles.
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rapidly in the fringe fields. However, as the beam enters the fringe fields of the focusing

quadrupoles, its phase space is severely distorted from the initial elliptical shape. The edge

emittance, which is an RMS quantity, is therefore no longer a good measure of the phase

space area of the beam.

The spikes in the emittance are caused by the pseudo-octupole component of the

fringe field. Figure 6.14 shows the emittance of an initially semi-Gaussian beam if we include

the longitudinal field e/b′2,0 (z) in the fringes but not the pseudo-octupole field e/b2,1 (z).

Although the overall emittance is still somewhat larger than in the case without fringe

fields, the spikes in the emittance have disappeared.

Note that in equation (2.70), the pseudo-octupole term e/b2,1 (z) depends on the

second derivative with respect to z of the quadrupolar field, whereas in equation (2.69)

the longitudinal term e/b′2,0 (z) depends on the first derivative. From figure 2.1, we see

that then the longitudinal field e/b′2,0 (z) at the end of a quadrupole consists of one peak

with a width of the order of the fringe length, while the pseudo-octupole consists of two

peaks with opposite signs, separated by the length of the fringe. These two peaks cause the

rapid increase and decrease in the emittance in the fringe fields of the quadrupoles. As an

example, figure 6.15 shows the magnitude of the pseudo-octupole field b2,1 (z) at the end of

the third magnet, together with the horizontal and vertical emittances.

We can conclude that the fringe fields are unlikely to be the cause of the anomalous

emittance growth found in the experiment. It may be that the anomalous emittance growth

is linked to the rotation of the beam that was found in the experiment. This will be discussed

in section 6.4.
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Figure 6.14: The edge emittance of an initially semi-Gaussian beam as a function of the
longitudinal distance traveled, for the scaled HIBALL-II case. This simulation included
only the longitudinal field e/b′2,0 (z) caused by the fringe fields of the electrostatic/magnetic
quadrupoles.
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6.2 The Modified Scaled HIBALL-II Case

For the scaled HIBALL-II case discussed above, the simulations indicated that a

sizeable emittance increase would occur due to the transverse expansion of the beam in the

experiment. In addition, an anomalous emittance growth was measured experimentally for

the scaled HIBALL-II case. An alternative envelope solution was therefore investigated in

the experiment [72]. This envelope solution is shown in figure 6.16. A beam with a current

of 95 µA was used. In this modified scaled HIBALL-II case, the beam is not apertured

at diagnostic station D1 in the experiment, unlike the scaled HIBALL-II case discussed

above. This eliminates one of the possible causes of the anomalous emittance growth. No

anomalous emittance increase was observed in the experiment for this case.

The simulations for the modified scaled HIBALL-II case started at the injector,

assuming a semi-Gaussian distribution initially. In the experiment, the initial emittance

at the source is unknown. In the simulation, its value was chosen such that the emittance

at D1 in the simulation matches the measured emittance at D1 in the experiment. Since

the beam is much smaller than the aperture in the first couple of electrostatic quadrupoles,

their image field effects are negligible. The presence of the conducting boundaries of the

first five quadrupoles was therefore not included in the simulation; they were replaced by

circular conducting boundaries at a distance of about four times the beam radius. Again

several simulations with different numbers of particles, grid cell size, and step size were

performed in order to guarantee convergence, with 40,000 particles on a 256×256 grid with

a 1 cm step size as the baseline case. All cases used spatial filtering and fourfold symmetry

to solve for the field. The beam parameters are given in table 6.4, whereas table 6.5 lists
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Figure 6.16: The Scaled Final Focus Experiment. The beam envelope shown corresponds
to the modified scaled HIBALL-II case.

Beam energy 160 keV
Initial edge emittance 2.25 π mm mrad
Beam current 95 µA

Initial beam parameters
a0 = b0 = 0.67 mm;
a′0 = b′0 = −1.0 mrad

Final focus spot size (from envelope calculation) 0.589 mm2

Table 6.4: Beam parameters for the modified scaled HIBALL-II case.

the focusing lattice properties. Figure 6.17 shows the beam envelope, the extent of the grid,

and the location of conducting boundaries in the simulation as a function of the longitudinal

distance. The simulations and their results are summarized in table 6.6.

From the data in table 6.4 and 6.6, we find that the emittance increases by a

factor of about 1.9. The emittance is shown as a function of distance along the optical axis

in figure 6.18. Comparing this figure to the beam radii shown in figure 6.19, we see that

emittance changes typically coincide with changes in the beam radius. In case the initial

beam distribution is K-V instead of semi-Gaussian, no significant emittance increase occurs.

These results agree with our conclusions of section 6.1, where we found that the emittance
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Quadrupole center
locations (m)

Quadrupole
lengths (m)

Field
gradient

Aperture (cm)

0.0651 0.0762 0. 2.54
0.1730 0.1016 0. 2.54
0.3254 0.1016 0. 2.54
0.5041 0.1016 0. 2.54
0.6565 0.1016 0. 2.54
0.8089 0.1016 0. 2.54
0.9613 0.1016 -1001 kV/m2 2.54
1.1137 0.1016 11219 kV/m2 2.54
1.2661 0.1016 -16861 kV/m2 2.54
1.4185 0.1016 8162 kV/m2 2.54
1.5709 0.1016 0. 2.54
1.7233 0.1016 0. 2.54
1.8757 0.1016 0. 2.54
2.0281 0.1016 0. 2.54
2.1805 0.1016 0. 2.54
4.0357 0.4 -0.775 T/m 1.91
4.7352 0.4 1.796 T/m 2.54
5.4387 0.4 -1.109 T/m 2.54
7.1617 0.4 -1.893 T/m 3.18
7.9237 0.717 1.975 T/m 3.18
8.6597 0.351 -3.368 T/m 1.91

Table 6.5: Lattice properties for the modified scaled HIBALL-II case.

Initial distribution
Number of
particles

Grid size
Step

size (cm)

Maximum
emittance √εxεy

(π mm mrad)

Spot
area

(mm2)

Semi-Gaussian
40,000
(2 lost)

256 × 256 1. 4.319 1.297

Semi-Gaussian
80,000
(4 lost)

256 × 256 1. 4.312 1.292

Semi-Gaussian
10,000

(none lost)
128 × 128 1. 4.356 1.310

Semi-Gaussian
40,000
(2 lost)

256 × 256 0.5 4.334 1.295

K-V
40,000

(none lost)
256 × 256 1. 2.257 0.607

Table 6.6: Simulation results for the modified scaled HIBALL-II case.
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Figure 6.17: The horizontal and vertical beam envelope, extent of the grid, and the location
of the conducting boundaries in the simulation of the modified scaled HIBALL-II case.
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increase found in simulations of the Scaled Final Focus Experiment are due to nonlinear

space-charge forces that occur during beam expansion.

For the modified scaled HIBALL-II case, no anomalous emittance growth occurred

in the experiment [72]. This allows us to make detailed comparisons between the simulation

and the experimental results. Phase space comparisons between the experimental measure-

ments and simulations have been described previously [72]. Here, we will only consider

the emittance of the beam measured at the diagnostic stations in the experiment, shown

in figure 6.18 in addition to the emittance as calculated by WARPxy. This figure shows

that there is good qualitative agreement and reasonable quantitative agreement between

the experimentally measured emittance and the emittance calculated by WARPxy.

6.3 The High Scaled Current Case

For charge neutralization experiments, a beam with a larger current of 400 µA

was used [72]. In this section, we will describe the beam dynamics up to the neutralization

point, in order to understand better how beams behave that have a larger current than

the scaled HIBALL-II value. A diagram of the Scaled Final Focus Experiment with the

400 µA beam is shown in figure 6.20. Since for this higher current, the beam is closer to

the conducting boundaries, we expect image fields to play a larger role than in the scaled

HIBALL-II and the modified scaled HIBALL-II case. The beam parameters for this higher

scaled current case are given in table 6.7.

Table 6.8 lists the focusing lattice properties, showing the quadrupole strengths

both in the experiment and in the simulation. Possibly due to the beam rotation in the
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Figure 6.18: The edge emittance of an initially semi-Gaussian beam as a function of the
longitudinal distance traveled, as well as the emittance measurements from the experiment,
for the modified scaled HIBALL-II case.
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Figure 6.20: The Scaled Final Focus Experiment. The beam envelope shown corresponds
to the higher scaled current case.

Beam energy 160 keV
Initial edge emittance 5.84 π mm mrad
Beam current 400 µA

Initial beam parameters
a0 = b0 = 1.0 mm;
a′0 = b′0 = −2.0 mrad

Final focus spot size (from envelope calculation) 3.0 mm2

Table 6.7: Beam parameters for the higher scaled current case.

experiment, the beam envelope in the simulation does not accurately reflect the beam

envelope in the experiment if exactly the same focusing strengths are used in the simulation

as in the experiment. In the simulation, the focusing strengths of some of the quadrupoles

were therefore modified slightly in order to stay as close as possible to the experimentally

determined beam envelope. The beam radius in the envelope and PIC simulations is shown

as a function of the distance along the optical axis in figure 6.21, together with the beam

radius measured in the experiment at the diagnostic locations D1 through D4.

The simulations for the high scaled current case started at the injector, assuming a

semi-Gaussian distribution initially. The initial emittance in the simulation was chosen such
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Figure 6.21: The horizontal and vertical beam radius of an initially semi-Gaussian beam as
a function of the longitudinal distance traveled for the higher scaled current case. Both the
results from the baseline particle-in-cell simulation and an envelope calculation are shown,
as well as the beam radius measured at the diagnostic stations D1-D4 in the experiment.
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Quadrupole center
locations (m)

Quadrupole
lengths (m)

Field gradient
(experiment)

Field gradient
(simulation)

Aperture (cm)

0.0651 0.0762 15.50 MeV/m2 15.50 MeV/m2 2.54
0.173 0.1016 -19.51 MeV/m2 -19.51 MeV/m2 2.54
0.3254 0.1016 14.52 MeV/m2 14.52 MeV/m2 2.54
0.5041 0.1016 -5.82 MeV/m2 -5.82 MeV/m2 2.54
0.6565 0.1016 2.48 MeV/m2 2.48 MeV/m2 2.54
0.8089 0.1016 0. 0. 2.54
0.9613 0.1016 -8.47 MeV/m2 -8.47 MeV/m2 2.54
1.1137 0.1016 16.19 MeV/m2 16.19 MeV/m2 2.54
1.2661 0.1016 -15.98 MeV/m2 -15.98 MeV/m2 2.54
1.4185 0.1016 6.99 MeV/m2 6.99 MeV/m2 2.54
1.5709 0.1016 0. 0. 2.54
1.7233 0.1016 0. 0. 2.54
1.8757 0.1016 0. 0. 2.54
2.0281 0.1016 0. 0. 2.54
2.1805 0.1016 0. 0. 2.54
4.0357 0.4 -1.86 T/m -1.86 T/m 1.91
4.7352 0.4 2.78 T/m 2.78 T/m 2.54
5.4387 0.4 -1.08 T/m -1.20 T/m 2.54
7.1617 0.4 -2.21 T/m -2.12 T/m 3.18
7.9237 0.717 2.00 T/m 1.99 T/m 3.18
8.6597 0.351 -2.62 T/m -2.84 T/m 1.91

Table 6.8: Lattice properties for the higher scaled current case.
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that the emittance measured at D1 in the experiment agrees with the emittance calculated

at D1 in the simulation. In earlier simulations, the initial emittance was set equal to the

measured emittance at D1, but this resulted in poorer agreement between the simulation

and the experimental results [25]. As in the simulations of the modified scaled HIBALL-II

case, the presence of the conducting boundaries of the first five electrostatic quadrupoles

was not included. They were replaced by circular conducting boundaries at a distance of

about four times the beam radius. The conducting boundaries of the other electrostatic

and magnetic quadrupoles were included though. As the beam converges onto the spot, the

grid size is scaled down to four times the beam radius at each time step. Figure 6.22 shows

the beam envelope, grid size, and location of the conducting boundaries in this simulation.

The base line case used 40,000 particles on a 256 × 256 grid with spatial filtering

and fourfold symmetry with a step size of 1 cm. In order to guarantee convergence, several

additional simulations were done using a different number of particles, grid size, or step

size. A simulation in which chromatic aberrations corresponding to a source temperature of

1100◦C were included, did not produce noticeably different results. Chromatic aberrations

were therefore subsequently ignored. The simulations and their results are summarized in

table 6.9.

Figure 6.23 shows the emittance calculated from the PIC simulation, as well as the

emittance measurements available from the experiment. The emittance near the focal spot

is about 10.2 π mm mrad, compared to 5.84 π mm mrad initially. This leads to a 16.8%

increase in the focal spot area compared with the K-V envelope calculation. The emittance

calculated from the simulation agrees reasonably well with the measured emittance.
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Figure 6.22: The horizontal and vertical beam envelope, extent of the grid, and the location
of the conducting boundaries in the simulation of the higher scaled current case.
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Figure 6.23: The edge emittance of an initially semi-Gaussian beam as a function of the
longitudinal distance traveled, as well as the emittance measurements from the experiment,
for the higher scaled current case.
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Initial distribution
Number of
particles

Grid size
Step

size (cm)

Maximum
emittance √εxεy

(π mm mrad)

Spot
area

(mm2)

Semi-Gaussian
40,000

(106 lost)
256 × 256 1. 11.4 40.7

Semi-Gaussian
80,000

(206 lost)
256 × 256 1. 11.4 40.6

Semi-Gaussian
10,000

(23 lost)
128 × 128 1. 11.0 40.9

Semi-Gaussian
40,000

(108 lost)
256 × 256 0.5 11.4 40.1

K-V
40,000

(none lost)
256 × 256 1. 5.92 34.3

Table 6.9: Simulation results for the higher scaled current case.

The emittance increase and subsequent increase in the spot size is mostly due

to the nonlinear space-charge field in the beam, causing severe distortions in phase space

that are in principle reversible. Figure 6.24 shows the emittance behavior of a K-V beam,

which is characterized by a linear space-charge field. Virtually no increase in emittance is

observed, and the focal spot size is only 0.36% larger than in the envelope calculation.

Replacing the conducting boundaries in the simulation by a single circular con-

ducting boundary with a large radius produces almost no changes in the simulation results.

The nonlinear image charges do not significantly affect the beam.

Phase space measurements were made in the simulation at the same diagnostic

locations as in the experiment for ease of comparison. As the beam propagates through the

final focus system, rather severe distortions occur in its phase space. Figures 6.25 through

6.31 show the sheared horizontal and vertical phase space at the diagnostic locations D1

through D4, showing both the experimental data and the simulation results. Measurements

of the horizontal phase space at D1 were not available from the experiment. The beam
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Figure 6.24: The edge emittance of an initially K-V beam as a function of the longitudinal
distance traveled, for the higher scaled current case.
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undergoes distortions from an s-shape to a z-shape and finally back to an s-shape. Figures

6.25 through 6.25 show reasonably good qualitative agreement in the vertical phase space

plots between the simulation and the experimental results. The shape of the phase space

distortions that occur in the experiment are replicated in the simulation, although the sim-

ulation and experimental results do not always agree on the severity of the distortions. For

the horizontal phase space, it is more difficult to compare the simulation and experimental

results due to severe distortions in the experimental measurements caused by additional

imperfections such as misalignments.

Several explanations can be given why the agreement between the simulation and

the experimental results is not perfect. The simulations represent an idealized system,

and do not take into account any multipole fields. Although the beam is compressing

longitudinally in the experiment, no 3D effects were included in the simulation. Finally, the

semi-Gaussian distribution used in the simulation is probably only a crude approximation

to the actual initial beam distribution, which is unknown. But one of the major causes of

the disparities is probably the beam rotation that was found in the experiment. Since the

simulation was set up such that the beam envelope agrees with experimentally measured

beam radii at the diagnostic locations (figure 6.21), the envelopes may disagree elsewhere

due to the rotation of the beam in the experiment.
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Figure 6.25: Sheared vertical phase space at diagnostic station D1. The density levels shown
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Figure 6.26: Sheared horizontal phase space at diagnostic station D2. The density levels
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in this figure are evenly spaced.
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6.4 Beam Rotation

In the simulations done so far, we have not included the effects of beam rotation.

In the experiment however, the beam has been observed to rotate. In this section, we will

give a possible explanation of the beam rotation and how it can be related to the anomalous

emittance growth observed in the scaled HIBALL-II case.

A rotation of the beam can be due to a number of causes, such as the presence of

the Earth’s magnetic field, an asymmetric effect of image charges for an off-axis beam, or

a physical rotation of the focusing quadrupoles or asymmetries in the currents of magnetic

quadrupoles, causing the quadrupolar field to be rotated. Whereas the Earth’s magnetic

field, of the order of 0.05 mT [1], is too weak to significantly affect the beam, simulations

have shown that the asymmetric image forces on an off-axis beam are too small to cause

the beam to rotate. This leaves one or more quadrupoles being rotated as the most likely

cause of the beam rotation observed in the experiment.

A physical rotation of a quadrupole about its longitudinal axis can still be treated

by linear theory [8] by describing its field as a superposition of an upright quadrupole and

a skew quadrupole. Including the skew quadrupole field will generate cross-terms in the

equations of motion (2.35), (2.36). Due to these cross-terms, the emittances in the horizontal

and the vertical direction are no longer conserved. Instead, we find two new emittance-like

constants of the motion [59]:

ε2
g =

1
2

(
ε2
x + ε2

y

)
+ 16

(
∆xy∆x′y′ −∆xy′∆x′y

)
(6.20)

ε2
h =

{
ε2
xε2

y

+ 256
([

∆xy∆x′y′
]2 +

[
∆xy′∆x′y

]2
)
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− 256
(
∆x2∆y2

[
∆x′y′

]2 + ∆x′2∆y′2 [∆xy]2
)

− 256
(
∆x2∆y′2

[
∆x′y

]2 + ∆x′2∆y2
[
∆xy′

]2
)

+ 512
(
∆xx′∆y′2∆xy∆x′y + ∆x′2∆yy′∆xy∆xy′

)

+ 512
(
∆x2∆yy′∆x′y∆x′y′ + ∆xx′∆y2∆x′y′∆x′

)

− 512
(
∆xy∆xy′ + ∆xx′∆yy′∆xy∆x′y′ + ∆xx′∆yy′∆xy′∆x′y

)} 1
2 (6.21)

in which the operator ∆ is defined by

∆uv ≡ 〈uv〉 − 〈u〉 〈v〉 (6.22)

Note that in the absence of cross-correlations between x and y, these expressions reduce to

the arithmetic and geometric mean of ε2
x and ε2

y, which are two independent quantities [59].

In the absence of nonlinear fields, these generalized emittances are conserved in the presence

of beam and quadrupole rotations, instead of ε2
x and ε2

y.

In the experiment, the horizontal and vertical emittance ε2
x and ε2

y are measured

without taking any beam rotation into consideration. These second-order moments of the

beam may increase substantially due to a rotation of the beam, although the true 4D phase

space volume is conserved. By only measuring the horizontal and vertical emittance of a

rotated beam, we are looking at a particular projection of phase space which is not indicative

of the true phase space occupied by the beam. This may result in huge increases in the

measured horizontal and vertical emittance, although the 4D phase space volume occupied

by the beam may be conserved.

A set of ten first-order differential equations may be derived for the evolution of the

second-order moments of the distribution, taking the beam rotation and also misalignments
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into consideration. These ten equations replace the four first-order differential equations for

a, a′, b, b′ for a non-rotating, on-axis beam. By solving this set of equations numerically,

the linear behavior of the beam in the presence of rotated quadrupoles can be calculated

quickly [8]. In this way, we can find the rotation angle of the beam, as well as the change in

the horizontal and vertical emittance of the beam due to the beam rotation. These results

can then be compared to particle-in-cell simulations of a beam in a system with rotated

quadrupoles.

Whereas the generalized emittance is constant in the linear system, in a particle-

in-cell simulation it will increase due to the presence of nonlinearities, such as space-charge

and geometric aberrations. This is similar to the increase in the horizontal and vertical

emittance calculated in a particle-in-cell simulation of a nonrotating beam, compared with

the constant horizontal and vertical emittance in an envelope calculation. For most of the

cases we have looked at, the spurious increase in the horizontal and vertical emittance due to

beam rotation is much larger than the increase due to nonlinearities. Therefore, the results

from the linear analysis agree fairly well with the results from particle-in-cell simulations.

Since the beam rotation is first observed at diagnostic station D3, we expect it to

be caused by a rotation of one or more of the first three magnetic quadrupoles. A rotation

of any of these quadrupoles will cause the beam to rotate, which will lead to an increase

in the horizontal and vertical emittance. For a given rotation of these quadrupoles, we can

calculate the horizontal and vertical emittance as a function of the longitudinal distance by

integrating the ten moment equations described above. The rotation angle can be found

by matching the emittance increase found in the calculation to the emittance measured
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Diagnostic station Emittance (π mm mrad)
D2 1.58 (vertical)

D4
8.79 (horizontal)
9.89 (vertical)
9.32 (√εxεy)

Table 6.10: Emittance measured in the experiment at the second and fourth diagnostic
station in the scaled HIBALL-II case.

in the experiment. Since there are three quadrupoles that may be rotated, for each case

there exist more than one combination of quadrupole rotations that can produce a given

emittance increase. By looking at the emittance increase and beam rotation in different

cases, we can determine which combination of quadrupole rotations is consistent with all

measurements.

The beam rotation for an elliptical beam is defined as the smallest angle the beam

has to be rotated by for it to be upright. For a uniform beam, this angle can be calculated

from

φ =
1
2

arcsin


 2∆xy√

(∆x2 −∆y2)2 + 4 (∆xy)2


 sign

(
∆x2 −∆y2

)
, (6.23)

in which ∆ is again defined by equation (6.22). This equation was used to determine the

beam rotation angle in the experiment and in the simulations.

In the scaled HIBALL-II case, the emittance increases by a factor of six between

the diagnostic stations D2 and D4 in the experiment [70]. Table 6.10 lists the emittance

measurements at the second and fourth diagnostic station in the experiment.

Solving the system of ten first-order differential equations for different combina-

tions of rotation angles for the first three magnetic quadrupoles revealed that quite small

rotation angles may produce the sixfold emittance increase found in the experiment. Ta-

ble 6.11 gives some examples of rotation angles producing the emittance increase observed
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Case
First

magnet
Second
magnet

Third
magnet

Fourth
magnet

Fifth
magnet

Sixth
magnet

(a) 5.7◦ 0◦ 0◦ 0◦ 0◦ 0◦

(b) 0◦ 1.24◦ 0◦ 0◦ 0◦ 0◦

(c) 0◦ 0◦ 1.55◦ 0◦ 0◦ 0◦

(d) 0.67◦ −0.67◦ 0.67◦ 0◦ 0◦ 0◦

(e) 0.62◦ −0.62◦ 0.62◦ 0.62◦ 0.62◦ 0.62◦

Table 6.11: Several combinations of rotation angles for the magnetic quadrupoles that give
rise to a sixfold increase in the horizontal and vertical emittance. These results were found
by integrating the linear moment equations.

in the experiment. Since the wiring of the second magnetic quadrupole is opposite from

the other magnets [71], we may expect the second magnet to be rotated in the opposite

direction (cases (d) and (e)). Rotating the first three magnets in the same direction by the

same degree did not reproduce the emittance measurements.

Once we determined the rotation angles of the magnets that give the observed

emittance increase, we can run a transverse slice PIC simulation using the rotation angles

found to check the results of the linear theory. This was done for the second example in

table 6.11, in which the first magnetic quadrupole was rotated by 1.24◦. Just as in the

baseline case for the previous scaled HIBALL-II beam simulations, a step size of 1 cm was

used. The grid size was increased to 256 × 256, using 160,000 particles, since unlike the

baseline case, fourfold symmetry could not be used in this simulation due to the presence

of the rotated quadrupole. The lattice parameters given in table 6.2 were used for this

simulation, adding a 1.24◦ rotation to the second magnetic quadrupole.

Figure 6.32 shows the horizontal and vertical beam radius in the presence of a 1.24◦

rotation of the second magnetic quadrupole, as calculated from the moment equations and

by doing a WARPxy simulation. Comparison with the beam envelope in the absence of
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any magnet rotations, also shown in figure 6.32, reveals that the beam radii do not change

significantly due to the magnet rotation.

Even though the quadrupole rotation angle is small, the subsequent beam rotation

angle is large. Figure 6.33 shows the beam orientation at several locations along the lattice,

as determined from the moment locations. This figure shows that the beam undergoes a

significant rotation due to one quadrupole being rotated by 1.24◦.

Figure 6.35 shows the emittance as calculated by the WARPxy simulations, using

a K-V and semi-Gaussian beam distribution initially, and the emittance as calculated by

the moment equations. The emittance increases sharply upon encountering the rotated

quadrupole, and decreases thereafter. The difference between the moment calculation and

the WARPxy simulation is small for the K-V beam; for the initially semi-Gaussian beam,

the emittance increase is somewhat larger due to the presence of nonlinear space-charge

forces. This effect is more pronounced if we look at the generalized emittances εg and εh,

shown in figure 6.36. Whereas the generalized emittances are conserved for the K-V beam,

they increase for a semi-Gaussian beam.

To investigate the cause of the emittance growth and the beam rotation, a series

of experiments was done using different focusing solutions [81]. This allowed us to measure

the beam rotation if some of the quadrupoles are switched off, which can then be used as

a diagnostic to find out which of the magnets cause the beam rotation. The first five beam

rotation experiments used the same initial beam parameters, given in table 6.12.

In the first experiment, the polarity of all six magnetic quadrupoles was switched

in order to check if the beam rotation is in fact due to the focusing magnets. It was found
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Figure 6.32: The horizontal and vertical beam radius of a K-V beam as a function of
the longitudinal distance traveled. The envelope solution assumed perfectly aligned mag-
nets, while the moment equations and the 2D transverse slice particle-in-cell simulation
(WARPxy) calculated the beam radii in the presence of a 1.24◦ rotation of the second
magnetic quadrupole.

Beam energy 160 keV
Initial edge emittance 1.9 π mm mrad

Beam current

92 µA second experiment
95 µA third experiment
95 µA fourth experiment
93 µA fifth experiment

Initial beam parameters a0 = b0 = 8.0 mm; a′0 = b′0 = −3.5 mrad

Table 6.12: Beam parameters for the first five beam rotation experiments.
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Figure 6.33: The beam orientation, calculated from the moment equations, at several loca-
tions along the lattice, in the presence of a 1.24◦ rotation of the second magnetic quadrupole.
Continued on next page.
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Figure 6.34: Continuation of figure 6.33.
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Figure 6.35: The emittance of a K-V and a semi-Gaussian beam as a function of the longi-
tudinal distance traveled, calculated from the moment equations and from a 2D transverse
slice particle-in-cell simulation using WARP.
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Figure 6.36: The generalized emittance of a K-V and a semi-Gaussian beam as a function
of the longitudinal distance traveled, calculated from a 2D transverse slice particle-in-cell
simulation using WARP.
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Quadrupole center
locations (m)

Quadrupole
lengths (m)

Field
gradient

Aperture
(cm)

0.127 0.1016 0. 2.54
0.2794 0.1016 0. 2.54
0.4318 0.1016 0. 2.54
0.5842 0.1016 0. 2.54
0.7366 0.1016 0. 2.54
2.5918 0.4 0. T/m 1.91
3.2913 0.4 1.15 T/m 2.54
3.9948 0.4 -0.849 T/m 2.54
5.7178 0.4 -2.02 T/m 3.18
6.4798 0.717 1.95 T/m 3.18
7.2158 0.351 -3.15 T/m 1.91

Table 6.13: Lattice properties for the second beam rotation experiment.

that the beam still rotates if the polarity is switched, but in the opposite direction. This sign

change indicates that the beam rotation is caused by a physical rotation of the quadrupoles,

an asymmetry in their fields, or by the currents in the leads to the quadrupoles.

In the second experiment, the first magnetic quadrupole was switched off. The

parameters of the focusing lattice are given in table 6.13. In this experiment, the beam was

still rotated at diagnostic station D4. Figure 6.37 shows the current profile of the beam in

configuration space as measured in the experiment at diagnostic location D4. The beam

was rotated by −6.1◦ with respect to the horizontal axis. It should be noted though that

it is difficult to determine the exact rotation angle due to the nonuniformities in the beam

profile.

We can conclude though that because the beam was still rotated although the

first magnetic quadrupole was switched off, case (a) from table 6.11 can be eliminated.

We can assess the cases (b) through (e) by comparing the beam rotation found in the

experiment to the beam rotation as calculated from the moments equations. Figures 6.38
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Figure 6.37: Current distribution of the beam as measured in the experiment at diagnostic
location D4, using the focusing lattice given in table 6.13. The beam was rotated by −6.1◦.



194

Quadrupole center
locations (m)

Quadrupole
lengths (m)

Field
gradient

Aperture
(cm)

0.127 0.1016 0. 2.54
0.2794 0.1016 0. 2.54
0.4318 0.1016 0. 2.54
0.5842 0.1016 0. 2.54
0.7366 0.1016 0. 2.54
2.5918 0.4 0. T/m 1.91
3.2913 0.4 0.99 T/m 2.54
3.9948 0.4 0. T/m 2.54
5.7178 0.4 -2.18 T/m 3.18
6.4798 0.717 1.92 T/m 3.18
7.2158 0.351 -2.64 T/m 1.91

Table 6.14: Lattice properties for the third beam rotation experiment.

through 6.41 show the current distribution in configuration space as measured at diagnostic

station D4, together with the beam ellipse as calculated from the moment equations for

the cases (b) through (e). This allows us to compare the measured beam rotation angle

with the calculated rotation angles for the cases listed in table 6.11, as well as to determine

the sign of the rotation angle. Whereas the beam rotation angles found from the moment

equations agree rather well with the value found experimentally, it should be noted that the

measurement of the rotation angle is obscured by the nonuniformities in the current profile.

In the third experiment, the first and third magnetic quadrupole were kept at zero

field. The parameters of the focusing lattice are given in table 6.14. Also in this experiment

the beam was rotated at diagnostic station D4. Figure 6.42 shows the current distribution

of the beam as measured in the experiment at diagnostic location D4. Even though the

third magnet was now switched off, the beam was still rotated by −18.4◦. So we can also

eliminate case (c) from table 6.11.

Figures 6.43 through 6.45 show the current distribution in configuration space as
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Figure 6.38: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations assum-
ing that the second quadrupole is rotated (case (b) in table 6.11). The moment equations
gave a rotation angle of −9.6◦, compared to −6.1◦ in the experiment.
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Figure 6.39: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations as-
suming that the third quadrupole is rotated (case (c) in table 6.11). The moment equations
gave a rotation angle of −12.5◦, compared to −6.1◦ in the experiment.
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Figure 6.40: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations as-
suming that the first, second, and third quadrupole are rotated (case (d) in table 6.11). The
moment equations gave a rotation angle of −10.6◦, compared to −6.1◦ in the experiment.
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Figure 6.41: Current distribution of the beam as measured in the experiment at diagnos-
tic location D4, together with the beam ellipse as calculated from the moment equations
assuming that all quadrupoles are rotated (case (e) in table 6.11). The moment equations
gave a rotation angle of −10.2◦, compared to −6.1◦ in the experiment.
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Figure 6.42: Current distribution of the beam as measured in the experiment at diagnostic
location D4, using the focusing lattice given in table 6.14. The beam was rotated by −18.4◦.
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Quadrupole center
locations (m)

Quadrupole
lengths (m)

Field
gradient

Aperture
(cm)

0.127 0.1016 0. 2.54
0.2794 0.1016 0. 2.54
0.4318 0.1016 0. 2.54
0.5842 0.1016 0. 2.54
0.7366 0.1016 0. 2.54
2.5918 0.4 0.82 T/m 1.91
3.2913 0.4 0. T/m 2.54
3.9948 0.4 -0.51 T/m 2.54
5.7178 0.4 -1.97 T/m 3.18
6.4798 0.717 1.94 T/m 3.18
7.2158 0.351 -2.80 T/m 1.91

Table 6.15: Lattice properties for the fourth beam rotation experiment.

measured at diagnostic station D4, together with the beam ellipse as calculated from the

moment equations for the cases (b), (d), and (e). The agreement between the rotation angle

determined experimentally and from the moment equations is poor. Although the lattice

parameters used in the moment equations are the same as those used in the experiment,

even the envelope solution does not agree, as we can see from the difference in the beam

size in figures 6.43 through 6.45.

In the fourth beam rotation experiment, the second magnetic quadrupole was

kept at zero field. The parameters of the focusing lattice are given in table 6.15. Again the

current profile was measured at diagnostic station D4, but now the beam did not appear

to be rotated. It should be noted though that since the beam was almost round at D4, it

would be hard to notice a rotation of the beam. Figure 6.46 shows the current distribution

of the beam as measured in the experiment at diagnostic location D4.

In order to be able to better distinguish a beam rotation angle if present, in the

fifth beam rotation experiment the focusing strength of the fifth magnetic quadrupole in
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Figure 6.43: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations assum-
ing that the second quadrupole is rotated (case (b) in table 6.11). The moment equations
gave a rotation angle of 2.4◦, compared to −18.4◦ in the experiment.
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Figure 6.44: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations as-
suming that the first, second, and third quadrupole are rotated (case (d) in table 6.11). The
moment equations gave a rotation angle of 1.3◦, compared to −18.4◦ in the experiment.
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Figure 6.45: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations as-
suming that all six quadrupoles are rotated (case (e) in table 6.11). The moment equations
gave a rotation angle of 1.8◦, compared to −18.4◦ in the experiment.
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Figure 6.46: Current distribution of the beam as measured in the experiment at diagnostic
station D4, using the focusing lattice given in table 6.15.
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Beam energy 160 keV
Initial edge emittance 1.9 π mm mrad
Beam current 83.5 µA second experiment
Initial beam parameters a0 = b0 = 4.0 mm; a′0 = b′0 = −1.5 mrad

Table 6.16: Beam parameters for the beam rotation experiment using a smaller initial beam.

table 6.15 was changed to 1.83 T/m such that the beam is elliptical at diagnostic station D4.

The measured current profile is shown in figure 6.47. Again the beam appears to be upright,

although its orientation is hard to determine due to the non-uniform charge distribution.

Calculating the rotation angle from these data using equation (6.23) yields −5.0◦.

Figures 6.48 and 6.49 show the current profile measured in the experiment, together

with the beam ellipse as determined from the moment equations for case (d) and (e) in

table 6.11. For case (e), all magnets with non-zero focusing fields are rotated the same

degree. Since the beam is round when entering the magnetic section, no torque is exerted

on the beam, and the beam rotation angle is equal to the quadrupole rotation angle. For

case (d), the first triplet of magnetic quadrupoles is rotated the same degree, so the beam

will exit the first triplet with a rotation angle equal to the quadrupole rotation angle. Since

the second triplet is upright, the beam will experience a torque there.

In the scaled HIBALL-II case, a beam rotation and subsequent anomalous emit-

tance increase was observed for a beam that was small at the second diagnostic station

and expanded in the drift section between the electrostatic and the magnetic section. In

order to investigate the effect of the beam expansion on the rotation angle, for the sixth

beam rotation experiment a new focusing solution was used with a smaller beam at D2.

Table 6.16 gives the initial beam parameters used for this experiment, whereas table 6.17

contains the lattice description.
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Figure 6.47: Current distribution of the beam as measured in the experiment at diagnostic
station D4, using the focusing lattice given in table 6.15 but with a magnetic field gradient
of 1.83 T/m for the fifth magnetic quadrupole. The beam was rotated by −5.0◦.
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Figure 6.48: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations as-
suming that the first, second, and third quadrupole are rotated (case (d) in table 6.11). The
moment equations gave a rotation angle of −0.26◦, compared to −5.0◦ in the experiment.
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Figure 6.49: Current distribution of the beam as measured in the experiment at diagnostic
location D4, together with the beam ellipse as calculated from the moment equations as-
suming that all six quadrupoles are rotated (case (e) in table 6.11). The moment equations
gave a rotation angle of 0.62◦ (equal to the quadrupole rotation angle), compared to −5.0◦

in the experiment.
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Quadrupole center
locations (m)

Quadrupole
lengths (m)

Field
gradient

Aperture
(cm)

0.127 0.1016 0. 2.54
0.2794 0.1016 0. 2.54
0.4318 0.1016 0. 2.54
0.5842 0.1016 0. 2.54
0.7366 0.1016 0. 2.54
2.5918 0.4 1.22 T/m 1.91
3.2913 0.4 0. T/m 2.54
3.9948 0.4 -0.90 T/m 2.54
5.7178 0.4 -1.47 T/m 3.18
6.4798 0.717 1.43 T/m 3.18
7.2158 0.351 -1.33 T/m 1.91

Table 6.17: Lattice properties for the beam rotation experiment using the smaller initial
beam (table 6.16).

Figure 6.50 shows the current distribution of the beam as measured in the experi-

ment at diagnostic location D4. Since the beam was almost round at diagnostic station D4,

it is hard to determine whether the beam was rotated or not.

Figures 6.51 and 6.52 show the current distribution in configuration space as mea-

sured at diagnostic station D4, together with the beam ellipse as calculated from the moment

equations for the cases (d) and (e). There is good agreement for the beam size and orien-

tation between the experiment and the moments calculation. In the experiment however,

the emittance increased from 1.9 π mm mrad initially to 9.0 π mm mrad horizontally and

5.1 π mm mrad vertically, while showing few distortions in phase space. The moment code

gave a final emittance of 1.98 π mm mrad for case (d) and a negligible emittance increase

for case (e). It should be noted though that the magnetic field gradient of the third magnet

had to be decreased from from 0.90 T/m in the experiment to 0.79 T/m in the moment

calculation in order to replicate the envelope measured in the experiment.

We can conclude that more than one set of quadrupole rotations can be found
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Figure 6.50: Current distribution of the beam as measured in the experiment at diagnostic
location D4, using the focusing lattice given in table 6.17.
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Figure 6.51: Current distribution of the beam as measured in the experiment at diagnos-
tic location D4, together with the beam ellipse as calculated from the moment equations
assuming that the second quadrupole is rotated (case (d) in table 6.11).
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Figure 6.52: Current distribution of the beam as measured in the experiment at diagnos-
tic location D4, together with the beam ellipse as calculated from the moment equations
assuming that all six quadrupoles are rotated (case (e) in table 6.11).



213

that can explain the beam rotation as well as the anomalous emittance growth found in

the experiment. These quadrupole rotations agree with various focusing solutions in the

Scaled Final Focus Experiment. However, some of the beam rotation experiments could

not be replicated due to discrepancies between an envelope calculation with the focusing

strengths used in the experiment and the beam envelope found in the experiment. The

calculated beam rotations are consistent though with those beam rotation experiments

whose beam envelope could be replicated. Furthermore, the quadrupole rotations needed

to generate such a beam rotation are surprisingly small, and might even be generated from

small current asymmetries in the quadrupole magnets. Therefore, it cannot be excluded

that quadrupole rotations are the cause of the beam rotation and the anomalous emittance

growth found in the experiment. This hypothesis can be tested by performing additional

experiments with different focusing solutions and check if the beam rotation and emittance

growth in the experiment are consistent with the quadrupole rotation angles such as those

given in table 6.11. To test the hypothesis of quadrupole rotations directly, the orientation

of the quadrupolar field in the experiment can be measured.
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Chapter 7

Summary

In the final stages of a heavy ion fusion driver, the beam is compressed longitu-

dinally in the drift compression section to reduce its pulse length and thereby increase the

energy deposition rate. Subsequently, the final focus system converges the beam onto a

small spot on the target.

To design a drift compression scheme, first a desired final pulse shape and duration

at the end of drift compression is chosen, as well as a desired average beam radius as a

function of position along the drift compression section. Typically the beam radius needs to

be larger toward the final focus system. The beam dynamics are then simulated backwards

in time starting at the end of the drift compression section, resulting in a longitudinal

expansion of the beam. The simulation is first run over one lattice half period to find the

magnitude of the current at the beam center. This is then used, together with the desired

beam radius, to calculate the half period length and magnet strength needed to keep the

undepressed tune fixed. We iterate over each lattice half period separately until the values
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for its length and quadrupole strength have converged. This process is continued for all

preceding half periods until the current has decreased sufficiently to match the beam current

at the end of the accelerator.

This procedure will give us the required initial velocity tilt and current profile, as

well as a focusing lattice set up for the center of the beam. Usually mismatches develop

in other parts of the beam due to a rapidly increasing current there. These mismatches

can be avoided by rematching the beam at the beginning of the drift compression section.

Although this will cause a mismatch near the end of compression section, its effect is not

as severe because it lasts for the last several lattice half periods only.

Once the drift compression lattice is set up, and the required initial beam parame-

ters are known, the effects of rematching at the beginning of drift compression on the beam

properties at the end of drift compression can be examined. It was found that longitudinal

expansion is only weakly dependent on the transverse beam dynamics, and therefore that

the final beam parameters are close to what was originally specified. The sensitivity of the

drift compression was analyzed for systematic errors in the initial tilt, and for systematic

and random errors in the initial current. In order to do these calculations in the space-

charge dominated regime, a new computer code was written to accurately calculate the

longitudinal electric field. This computer code assumes that the beam is round, and uses

an existing RZ field solver to find the longitudinal electric field.

The effects of third order aberrations in final focus systems were analyzed. Third

order aberrations become more severe as the beam convergence angle becomes larger. A

large convergence angle is desirable though in order to achieve smaller spot sizes. It was
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shown that for moderate convergence angles of less than 15 mrad, the effects of third order

aberrations can be mitigated by rematching the quadrupoles in the final focus section, taking

the aberrations into account. The use of correction elements such as octupoles can then be

avoided. For larger convergence angles, the third order aberrations cause a significant halo

formation, which cannot be corrected for with rematching.

The Scaled Final Focus Experiment at LBNL was simulated with detailed particle-

in-cell calculations in order to improve our understanding of the experimental results. The

effect of nonlinear space-charge forces on radially expanding beams was analyzed. The emit-

tance increase during expansion can be cast in nondimensional form, allowing extrapolation

to other parameter regimes. Phase-space comparisons have been performed between the ex-

periment and simulations. Although reasonable agreement was achieved, these comparisons

also suggested that some important effects in the experiment may have been neglected in

the simulation. One of these effects was the beam rotation that occurs in the experiment.

The possibility of a rotation of the focusing quadrupoles being the cause of the beam ro-

tation was investigated. A simplified linear model of the Scaled Final Focus Experiment

showed that a minor rotation of one or more of the quadrupoles may have caused such a

beam rotation.
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Appendix A

Python Scripts Used

A.1 Drift Compression Design

The Python script below was used to set up a drift compression section using Her-

mes, as described in chapter 4. One backward run is done to set up the lattice, followed by

one forward run to assess the effects of rematching or initial errors. The file design990113

contains information about the standard IRE design, as described in table 1.2. The rou-

tine sethermesbeam initializes a beam for Hermes. The variable top.straight defines the

fraction of the beam in the flat-top part of the beam, whereas her.iprofile specifies the

shape of the current falloff at the beam ends. For her.iprofile = 2, a parabolic falloff is

used. If the boolean variable lfinalrematch is set to true, the beam is rematched once the

backward run reaches the beginning of the drift compression. Without rematching at the

beginning of drift compression, the forward and backward run are identical. The variable

stepsize specifies the step size to be used, in units of meters. The function getscaling

defines what the average beam radius should be as a function of position along the drift
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compression. At the end of the run, the RMS deviation is calculated between the current

at the end of the drift compression and the originally specified current.
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from warp import *
from design990113 import *
from matchenv import *
from match_tune import *
from hermestools import *

# IRE Final Focus System
# Hermes simulation

lfinalrematch=true
# Sets whether the beam should be rematched at the accelerator end
stepsize = 0.03
# Step size in Hermes and Env
lmakedump = false
# Make a dump file containing the beam and lattice

# --- Set four-character run id, comment lines, user’s name.
top.runid = "test"
top.pline2 = "IRE Drift compression, 20 ns final pulse"
top.pline1 = "Hermes calculation"
top.runmaker = "Michiel de Hoon"

# --- Read in design
from design990113 import *

beam_duration4 = 20.e-9 # 20 ns
current4 = charge_per_beam / beam_duration4

# --- Set initial parameters to those of the beam at the target
top.a0 = 0.005
top.b0 = 0.005
top.ap0 = 0.0
top.bp0 = 0.0
top.ibeam = current4 * 0.02
top.emitn = emitn0
top.ekin = 200e6
top.aion = 39 # Cs ion
top.zion = 1.e0
top.lrelativ = true
derivqty()

# --- Reset current and calculate needed values
sigma3 = sigma1
sigma4 = 72. # 72 degrees
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occupancy4 = 0.65
a_bar3 = a1mean
a_bar4 = 0.06
# desired average beam radius when entering the final focus section
top.ibeam = current4
envx() # To calculate some basic quantities
hlp4 = 0.5 * a_bar4 * sqrt (2*(1-cos(sigma4*pi/180))/env.genprv)
# lattice half period
current3 = 1.5 * charge_per_beam / beam_duration3
# factor of 1.5 to account for the parabolic shape
pulse_length4 = beam_duration4 * top.vbeam
top.a0 = a_bar4
top.b0 = a_bar4
top.ap0 =
sqrt(2*(1-cos(sigma4*pi/180))/(1-2.*occupancy4/3.))*a_bar4/hlp4
top.bp0
=-sqrt(2*(1-cos(sigma4*pi/180))/(1-2.*occupancy4/3.))*a_bar4/hlp4

# --- Set up the lattice
top.nquad = 304 - 1
gchange ("Lattice",0)

top.quadzs[-4:] = hlp4 * (0.5*(1-occupancy4) + arrayrange(4.))
top.quadze[-4:] = top.quadzs[-4:] + occupancy4 * hlp4
top.quaddb[-4:] = 17. * array ([1., -1., 1., -1.])
# Exact values to be calculated later

shift = -1000. # 1 km out of the way
top.quadzs[:-4] = shift
top.quadze[:-4] = shift

# --- Initialize envelope package
top.zlatperi = 0
env.zl = 0.
env.zu = 2*hlp4
env.nenv = int((env.zu-env.zl)/stepsize)
env.dzenv = (env.zu-env.zl)/env.nenv
env.tunezs = 0.
env.tuneze = env.zu
top.zlatstrt = 0.e0
package ("env"); generate();
step()

# --- Setup aperture rule
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def a_max (a_bar, occupancy):
return (1 + (1-0.5*occupancy)*

sqrt(2*(1-cos(sigma4*pi/180))/(1-2./3.*occupancy))/4) * a_bar

def aperturerule (a_max):
return (1.25 * a_max + 0.005)

aperture3 = aperturerule(a_max(a_bar3,occupancy4))

# --- Find matched solution

dbdx4 = match_tune (sigma4, array(range(-4,0,1)))
a_bar4 = (top.a0 + top.b0)/2.
a_max4 = max(env.aenv)
aperture4 = aperturerule (a_max4)
top.quadap[-4:] = aperture4
top.quaddb[-2:] = top.quaddb[-4:-2]

# --- Setup drift spaces
top.ndrft = top.nquad + 1
gchange ("Lattice",0)
top.drftap[:] = aperture4
top.drftzs[-4:] = top.quadze[-4:]
top.drftze[-5:-1] = top.quadzs[-4:]
top.drftze[-1] = 4*hlp4
top.drftzs[:-4] = shift
top.drftze[:-5] = shift

print ’Matched solution found:’
print ’ magnetic field gradient =’, dbdx4, ’T/m’
print ’ pole tip field =’, dbdx4*aperture4 , ’T’

# --- Set up initial beam parameters for HERMES
her.niz = 51
gchange(’HERvars’)
her.nizhist = her.niz
gchange (’HERhist’)
top.zimin = 0.
top.zimax = +pulse_length4
top.rwall = aperture4

top.straight = 0.5
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env.zl = 0.
env.zu = env.zl + hlp4
env.nenv = int((env.zu-env.zl)/stepsize)
env.dzenv = (env.zu-env.zl)/env.nenv
generate()

her.zlher = env.zl
her.zuher = her.zlher - hlp4
her.dther = -stepsize/top.vbeam

# --- Set controlling flags
her.icharge = 7
her.nhher = 1
her.iprofile = 2
wrz.nr = 64
wrz.nz = 128

# --- Set up Hermes beam
package ("her"); generate()
sethermesbeam()
wrz.filt = array ([0.,0.,0.,0.,0.])

def cot(x):
return cos(x)/sin(x)

def getscaling (z):
expansionlength = 25. * hlp4
if z < expansionlength:
a_bar=a_bar3+(a_bar4-a_bar3)*(1+tanh(cot(pi*z/expansionlength)))/2.

else:
a_bar=a_bar3

occupancy = occupancy4
return [a_bar,occupancy]

# --- Use Hermes to set up the drift compression section
package("her")
iq_match_end = 0
hlp = hlp4
a_bar = a_bar4
occupancy = occupancy4
top.rwall = aperture3
her.zuher = 0.
initialvar = array (her.var)
i = 0
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lafixed = false
zstart = 0.
hlps = []
her.dther = - stepsize / top.vbeam
nsteps = 0
while (her.var[12,her.niz/2] > current3):
i = i + 1
savedvar = array (her.var)
her.zlher = her.var[8,0]
her.islice = her.niz/2
error = 1.
while abs(error) > 1e-9:
her.zuher = zstart - hlp/2.
her.jhher = -1
her.nther = 0
her.var[:,:] = savedvar[:,:]
step()
index = searchsorted (-her.hsher[her.islice,:],-her.zuher)
fraction = (her.zuher-her.hsher[her.islice,index])/(

her.hsher[her.islice,index-1]-her.hsher[her.islice,index])
current = fraction * her.hcur[her.islice,index-1] + (

1-fraction) * her.hcur[her.islice,index]
[a_bar,occupancy] = getscaling (abs(zstart) + hlp/2)
error = hlp4 * (a_bar/a_bar4) * sqrt(current4/current) - hlp
hlp = hlp + error
dbdx = dbdx4 * power (hlp4/hlp, 2) * (occupancy4/occupancy) * sqrt(

(3.-2.*occupancy4)/(3.-2.*occupancy))
top.quadzs[:-i-3] = zstart-hlp*(1+occupancy)/2. + (

arange(-top.nquad+i+3,1.) * hlp)
top.quadze[:-i-3] = zstart-hlp*(1-occupancy)/2. + (

arange(-top.nquad+i+3,1.) * hlp)
top.quaddb[:-i-3] = - sign (dbdx, top.quaddb[-i-3]) * (

cos(pi*arange(-top.nquad+i+3,1.)))
top.drftzs[1:-i-3] = top.quadze[:-i-3]
top.drftze[:-i-4] = top.quadzs[:-i-3]
top.quadap[:-i-3] = aperturerule (a_max(a_bar,occupancy))
top.drftap[:-i-4] = top.quadap[-i-4]

her.var[:,:] = savedvar[:,:]
her.jhher = -1
her.nther = 0
her.islice = 0
her.zuher = zstart - hlp
print ’### Hermes running backwards from’, her.zlher, ’to’, her.zuher
step()
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hlps.append(hlp)
zstart = zstart - hlp
nsteps = nsteps + her.nther

print "Backward run: number of steps =" , nsteps
her.nsteps = nsteps
del savedvar, nsteps

# --- Shift the Hermes variables
her.var[8,:] = her.var[8,:] - zstart
initialvar[8,:] = initialvar[8,:] - zstart
her.zuher = -zstart
her.zlher = 0.
her.dther = - her.dther
her.jhher = -1
her.nther = 0
her.nhher = 1

# --- Resize the quad arrays
top.quadzs[:i+4] = top.quadzs[-i-4:] - zstart
top.quadze[:i+4] = top.quadze[-i-4:] - zstart
top.quaddb[:i+4] = top.quaddb[-i-4:]
top.drftzs[:i+5] = top.drftzs[-i-5:] - zstart
top.drftze[:i+5] = top.drftze[-i-5:] - zstart
top.quadap[:i+4] = top.quadap[-i-4:]
top.drftap[:i+5] = top.drftap[-i-5:]
top.nquad = i+4-1
top.ndrft = i+4
gchange ("Lattice",0)

# --- Calculate half lattice period properties
hlps.reverse()
hlps = array(hlps)
hlpzs = zeros(shape(hlps),’d’)
zstart = 0.
for i in range(len(hlps)):
hlpzs[i] = zstart
zstart = zstart + hlps[i]

# --- Now rematch to the final beam current
if lfinalrematch:
errorlimit = 1.e-9
niter = 1000
env.nenv = int(hlps[0]/stepsize)
package ("env"); generate()
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for i in range (1,her.niz-1):
hlpindex = searchsorted (hlpzs,her.var[8,i])
env.zl = hlpzs[hlpindex-1]
env.zu = hlpzs[hlpindex]
env.dzenv = (env.zu -env.zl) / env.nenv
top.a0 = her.var[0,i]
top.b0 = her.var[2,i]
top.ap0 = sign ((her.var[1,i]-her.var[3,i])/2.,

-top.quadde[hlpindex-1]+top.quaddb[hlpindex-1]*top.vbeam)
top.bp0 = - top.ap0
# --- Load variables for this slice
top.emit_s = 0.
top.emitn = sqrt(her.var[10,i]*her.var[11,i])
gamma = 1./sqrt(1-power(her.var[9,i],2.))
top.emit = top.emitn / (her.var[9,i]*gamma)
top.ibeam = her.var[12,i]
top.vbeam = her.var[9,i] * top.clight
# --- Recalculate stuff
derivqty()
envx()
for counter in range(niter):
top.a0 = 0.25*abs(env.aenv[0]+env.aenv[-1]+env.benv[0]+env.benv[-1])
top.ap0= 0.25*(env.apenv[0]-env.apenv[-1]-env.bpenv[0]+env.bpenv[-1])
top.b0 = top.a0
top.bp0=-top.ap0
envx()
error = abs(top.a0-env.aenv[-1])
error = error + abs(top.b0-env.benv[-1])
error = error + abs(top.ap0+env.apenv[-1])
error = error + abs(top.bp0+env.bpenv[-1])
if error < errorlimit:
break

if (error > errorlimit):
print "Slice", i, ": After", niter, "steps"
raise "No convergence in envelope rematch"

# --- Calculate the envelope value at the position of this slice
env.zu = her.var[8,i]
env.dzenv = (env.zu -env.zl) / env.nenv
envx()
# --- Save the results
her.var[0,i] = env.aenv[-1]
her.var[1,i] = env.apenv[-1]
her.var[2,i] = env.benv[-1]
her.var[3,i] = env.bpenv[-1]
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package ("her")

# --- Save Hermes data
idealvar = array (initialvar)
initialvar[:,:] = her.var[:,:]
for i in range (top.nquad+1-4):
print ’Magnet #’+str(i)+’, aperture = ’+str(

100*top.quadap[i]) + ’ cm, pole tip field = ’ + str(
abs(top.quaddb[i])*top.quadap[i]) + ’ T.’

# --- Run Hermes through the whole drift compression section
print ’### Hermes running forwards from’, her.zlher, ’to’, her.zuher
step()
print "Forward run: her.nther =" , her.nther

# --- Generate plots
hcp_file (top.runid.tostring()+’.ps’)
hcpon()
plg (1000*her.haher[her.niz/2,:],her.hsher[her.niz/2,:],color=red)
plg (1000*her.hbher[her.niz/2,:],her.hsher[her.niz/2,:],color=blue)
plg (1000*top.quadap,(top.quadzs+top.quadze)/2,color=green)
ylimits (0.)
ptitles (’Beam center’,’Distance (m)’,’Beam radius (mm)’,’’)
fma()
plg (1000*her.haher[1,:],her.hsher[1,:],color=red)
plg (1000*her.hbher[1,:],her.hsher[1,:],color=blue)
plg (1000*top.quadap,(top.quadzs+top.quadze)/2,color=green)
ylimits (0.)
ptitles (’Second slice’,’Distance (m)’,’Beam radius (mm)’,’’)
fma()
plg (her.cur,her.sher)
ptitles (’’,’Position (m)’,’Current (A)’,’’)
fma()
plg (her.cur,her.sher)
plg(idealvar[12,:],idealvar[8,:],color=red)
ptitles (’’,’Position (m)’,’Current (A)’,’’)
fma()
plg (1000*her.aher,her.sher,color=red)
plg (1000*her.bher,her.sher,color=blue)
ptitles (’’,’Position (m)’,’Beam radius (mm)’,’’)
fma()
plg (100.*(her.hvzher[:,0]/her.hvzher[her.niz/2,0]-1.),her.hsher[:,0])
ptitles (’Initial tilt’,’Position (m)’,

’Relative velocity compared to the beam center (%)’,’’)
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fma()
plg (100.*(her.vzher/her.vzher[her.niz/2]-1.),her.sher)
ptitles (’Remaining tilt’,’Position (m)’,

’Relative velocity compared to the beam center (%)’,’’)
fma()
hcpoff()

stdcur = sqrt(sum(power(her.cur-idealvar[12,:],2))/(her.niz-1))
print "Current deviation is", stdcur/current4
tilt = (her.hvzher[0,0]-her.hvzher[-1,0])/her.hvzher[her.niz/2,0]
print "Initial head to tail tilt is", tilt

def pp(slice=her.niz/2):
winkill()
window()
plg (her.haher[slice,:],her.hsher[slice,:],color=red)
plg (her.hbher[slice,:],her.hsher[slice,:],color=blue)
plg (top.quadap,(top.quadzs+top.quadze)/2,color=green)

if lmakedump:
her.niztmp = 0
gchange ("HERtmp",0)
her.nizfield = 0
gchange("HERfield",0)
her.nizfield = -1
gchange("HERfield",0)
her.nizhist = 0
gchange("HERhist",0)
savednr = wrz.nr
savednz = wrz.nz
gchange ("Fieldsrz", 0)
wrz.nr = savednr
wrz.nz = savednz
del savednr, savednz
her.jhher = -1
her.nther = 0
dump (top.runid.tostring()+’.dump’)
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A.2 PIC Code Rematching of Final Focus Systems

The Python script below was used for rematching a final focus system using the

PIC code WARPxy, as described in chapter 5. In the example below, a saved file is loaded

in. That line (pyrestore (top.runid.tostring()+’.dump’)) can be skipped in order to

start a matching iteration from scratch. An iteration sequence is carried out by calling

FirstStep() first to find the initial error. Iteration steps can then be performed by calling

NextStep(). The convergence angle at the neutralization point that we are looking for is

defined by the variable theta. The variable nparticles is the number of particles to be

used for the WARPxy runs, while averagequadstep and averagestep are the step sizes

to be used inside and outside of the quadrupoles and their fringe fields. If lsamestep is

set to true, the step size will be equal to averagestep throughout. If any of these control

variables or theta is changed, FirstStep() should be called first before making iteration

steps by calling NextStep(). The convergence angle found in the simulation is compared

to the desired convergence angle, and the deviation of a′ and b′ from zero and a and b from

each other is calculated on each iteration step. The code returns the total error in these

quantities every time FirstStep() or NextStep() is called. This script is based on the

Newton-Raphson method for nonlinear systems of equations [80].
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from warp import *
from fringedquads import *
from LinearAlgebra import *

# IRE Final Focus System
# 2D slice simulation

lfilt=true # Filtering?
lenvonly=false # Only do envelope calculation
lmakedump=true # Sets whether a final data dump is done.
lsamestep=false # If true, the same step is used for quads and drifts
lfringe=true # Sets whether quadrupoles have fringe fields.
if lfringe: lpseudooct = true
# Sets whether the pseudo-octupole field is included in the fringe field.

# --- Set four-character run id, comment lines, user’s name.
top.runid = "thta"
top.pline2 = "IRE Final Focus System"
top.pline1 = "2D Slice calculation, with fringe fields"
top.runmaker = "Michiel de Hoon"

setup()

# --- Specify final focus parameters

neutralization = 0.98
theta = 0.014
standoff = 1.9

# --- Set some initial parameters
top.a0 = 0.01
top.b0 = 0.01
top.ap0 = 0.
top.bp0 = 0.
top.ibeam = 937.5
top.emit = 4.758e-5
top.ekin = 200e6
top.aion = 39 # Cs ion
top.zion = 1.e0
top.lrelativ = true
derivqty()
top.vthz = 0.00e-2*top.vbeam # zero for now

# --- Initialize envelope package
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top.zlatperi = 0
env.zl = 0.
env.zu = standoff
env.dzenv = (env.zu-env.zl)/1000.
env.tunezs = 0.
env.tuneze = env.zu
top.zlatstrt = 0.e0
package ("env"); generate()

# --- Quads
top.nquad = 4 - 1
gchange ("Lattice",0)

top.quadzs[:] = 0.25 + arrayrange (top.nquad+1)
top.quadze[:] = 0.75 + arrayrange (top.nquad+1)
top.quaddb[:] = ones ((top.nquad+1),’d’)

# --- Setup fringe fields if necessary
if (lfringe):
fringelen = 1.0 * array ([0.15] * (top.nquad+1)) # 15 cm fringe length
fringescale = 0.5
fringedquads(fringelen,fringescale,lpseudooct,

usequads=true,npoints=1000,lclear=false)

# +++ Set input parameters describing the simulation.

averagestep = 0.01 # 1 cm is the average stepsize
averagequadstep = averagestep # also in the quads
if lfringe:
averagequadstep = 0.001
# but there it is 1 mm in case of fringe fields

w3d.nx = 128; w3d.ny = 128
top.ibpush = 1 # fast B advance
w3d.l4symtry = true

if (lfilt):
w3d.filt[2,0:2] = pi/4 # 0.5 for Gaussian
w3d.filt[3,0:2] = 8. # 2.0 for Gaussian

# --- Set beam distribution and numerics
nparticles = 40000
top.npmax = nparticles
w3d.distrbtn = "semigaus"
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w3d.xrandom = "digitrev"
w3d.vtrandom = "digitrev"
w3d.vzrandom = "digitrev"
w3d.ldprfile = "polar"

# --- Set up some windows.
top.rwindows[:,1] = [0.e0,.005e0]
top.rwindows[:,2] = [0.e0,.01e0]
top.rwindows[:,3] = [0.e0,.02e0]

# --- Select plot intervals, etc.
top.nhist = 1
top.itplps[:]=0
top.itplfreq[:]=0
top.itmomnts[0:4]=[0,1000000,abs(top.nhist),0]

# --- Initialize
hprwall = []
hxmmax = []

def ChangeGridsizeScaleBoundary (gridsize):
oldxmmax = w3d.xmmax
w3d.xmmax = gridsize
w3d.ymmax = w3d.xmmax
w3d.xmmin = -w3d.xmmax
w3d.ymmin = -w3d.ymmax
if (w3d.l2symtry):
w3d.ymmin = 0

if (w3d.l4symtry):
w3d.xmmin = 0
w3d.ymmin = 0

ratio = w3d.xmmax / oldxmmax
fxy.xcond = fxy.xcond * ratio
fxy.ycond = fxy.ycond * ratio
fxy.cmatxy = fxy.cmatxy / (ratio * ratio)
top.prwallz = top.prwallz * ratio
w3d.dx = (w3d.xmmax - w3d.xmmin)/w3d.nx
w3d.dy = (w3d.ymmax - w3d.ymmin)/w3d.ny
loadrho() # needed to get charge density on new grid
top.fstype = 0
fieldsolxy(1)
top.fstype=1

# --- Use beforefs function to change size of grid
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if lfringe: ffstart = top.mmltze[-1]
else: ffstart = top.quadze[-1]
w3d.lbeforefs = true
def beforefs():
global hxmmax, hprwall
if top.zbeam > ffstart:
ChangeGridsizeScaleBoundary (8.*max(top.xrms[0],top.yrms[0]))

hprwall.append (top.prwallz[0])
hxmmax.append (w3d.xmmax)

def propagate(distance, stepsize):
nsteps = ceil (distance/stepsize)
wxy.ds = distance / nsteps
top.dt = wxy.ds / top.vbeam
wxy.dtp[:] = wxy.ds/where(greater(top.uzp,0.),top.uzp,top.vbeam)
step (nsteps)

apfactor = 1.25
apoffset = 0.005
def aperturerule (a_max):
return (apfactor * a_max + apoffset)

# --- Initialize for the iteration

iquads = array ([0,1,2,3])
try:
if lfringe: dummy = take(top.mmltid,iquads)
else: dummy = take(top.quadde,iquads)

except IndexError:
raise "Error: iquads index out of bounds"

# --- Set some constants
STPMX = 100.0
TOLX = 1.0e-4
# Minimum relative change in quad strengths for the iteration to continue
ALF = 1.0e-4
# Ensures sufficient decrease in function value
EPS = 1.0e-8
# Approximate square root of the machine precision.

savedmsmmlt = zeros ((top.nzmmltmax+1,top.nmsmult,top.nmmltsets),’d’)
savedmsmmltp = zeros ((top.nzmmltmax+1,top.nmsmult,top.nmmltsets),’d’)
savedquadde = zeros ((top.nquad+1),’d’)
savedquaddb = zeros ((top.nquad+1),’d’)
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# --- Read in saved data

pyrestore (top.runid.tostring()+’.dump’)
from fixlogicals import *
fixlogicals()

# --- Define functions needed for iteration

def Initialize():
global hprwall, hxmmax
# --- Re-initialize the slice package
top.lprntpara = false
top.verbosity = 0
top.zbeam = 0.
top.zgrid = 0.
top.zgridprv = 0.
top.it = 0.
top.time = 0.
top.jhist = -1
top.np_s = array ([0],’i’)
top.npmax = nparticles
# --- Set grid size in the starting channel
top.prwall = aperturerule (max(max(env.aenv),max(env.benv)))
w3d.xmmax = top.prwall / 0.95
w3d.ymmax = w3d.xmmax
w3d.xmmin = -w3d.xmmax
w3d.ymmin = -w3d.ymmax
# --- Initialize history arrays
hprwall = [top.prwall]
hxmmax = [w3d.xmmax]
# --- Initialize for the generate
distance = top.quadzs[0]
nsteps = ceil (distance / averagestep)
wxy.ds = distance / nsteps
top.dt = wxy.ds / top.vbeam
# --- Generate the PIC code
w3d.nz = 2
w3d.zmmin = 0.
w3d.zmmax = 0. # Needed for parallel running
# --- Set up the boundary condition
top.fstype = 1
symm_fact = 1.
if (w3d.l2symtry): symm_fact = 0.5
if (w3d.l4symtry): symm_fact = 0.25
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fxy.ncxymax = w3d.nx+w3d.ny
fxy.ncxy = fxy.ncxymax
gallot("CapMatxy",0)
fxy.xcond[:]=top.prwall*cos(2.*pi*symm_fact*arrayrange(0,1,1.0/fxy.ncxy))
fxy.ycond[:]=top.prwall*sin(2.*pi*symm_fact*arrayrange(0,1,1.0/fxy.ncxy))
fxy.vcond[:] = 0.0
package("wxy"); generate()
if lfringe: top.quads = 0
fieldsolxy(0)

def RunSimulation():
Initialize()
if lfringe:
print ’In RunSimulation. Quad strengths are’, top.msmmlt[500,0,:]

else:
print ’In RunSimulation. Quad strengths are’, top.quaddb[:]

# --- Start simulation
if lsamestep:
propagate(zneutralize,averagestep)
thetasave = - top.xxpbar[0]/top.xrms[0] - top.yypbar[0]/top.yrms[0]
top.sw[:] = top.sw[:] * (1. - neutralization)
propagate(standoff,averagestep)

else:
# Initial drift section
if (lfringe): propagate (top.mmltzs[0],averagestep)
else: propagate (top.quadzs[0],averagestep)
for iq in range (top.nquad+1):
if (lfringe):

distance = min(top.mmltze[iq],zneutralize)-top.zbeam
propagate (distance,averagequadstep)
if (zneutralize < top.mmltze[iq]):
raise "Neutralization inside fringe field"

else:
distance = min(top.quadze[iq],zneutralize)-top.zbeam
propagate (distance,averagequadstep)

if (iq < top.nquad):
if (lfringe): distance = top.mmltzs[iq+1] - top.zbeam
else: distance = top.quadzs[iq+1] - top.zbeam

else:
distance = zneutralize - top.zbeam
if (distance > 0): propagate (distance,averagestep)
thetasave = - top.xxpbar[0]/top.xrms[0] - top.yypbar[0]/top.yrms[0]
top.sw[:] = top.sw[:] * (1. - neutralization)
distance = standoff # spot at the standoff distance exactly
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propagate (distance,averagestep)
if top.nplive < nparticles:
print "Particles lost, remaining number is", top.nplive

asave = 2*top.xrms[0]
apsave = 2*top.xxpbar[0]/top.xrms[0]
bsave = 2*top.yrms[0]
bpsave = 2*top.yypbar[0]/top.yrms[0]
return [thetasave,asave,bsave,apsave,bpsave]

def FirstStep():
global fvec, f, scaling, stpmax
if lfringe:
savedmsmmlt[:,:,:] = take(top.msmmlt[:,:,:],iquads,2)
savedmsmmltp[:,:,:] = take(top.msmmltp[:,:,:],iquads,2)

else:
savedquadde[:] = take(top.quadde[:],iquads)
savedquaddb[:] = take(top.quaddb[:],iquads)

print ’### Calculating the initial error...’
[thetasave,asave,bsave,apsave,bpsave] = RunSimulation()
fvec = array([thetasave-theta,asave-bsave,apsave-apf,bpsave-bpf])
f = 0.5 * sum (fvec*fvec)
print ’### Initial error is ’, sqrt(2.*f)
scaling = array ([1.0, 1.0, 1.0, 1.0])
stpmax = 4.0 * STPMX

def NextStep():
global fvec, f, scaling, stpmax
print ’### Calculating the jacobian matrix’
# --- Vary each quad
fjac = zeros ((4,4),’d’)
g = zeros ((4),’d’)
p = zeros ((4),’d’)
xold = zeros ((4),’d’)
for i in range (4):
temp = scaling[i]
h = EPS * abs(temp)
if (h == 0.0): h = EPS
scaling[i] = temp + h # Trick to reduce finite precision error.
h = scaling[i] - temp;
if lfringe:
for j in range (4):
iq = iquads[j]
top.msmmlt[:,:,iq] = savedmsmmlt[:,:,j] * scaling[j]
top.msmmltp[:,:,iq] = savedmsmmltp[:,:,j] * scaling[j]
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else:
for j in range (4):

iq = iquads[j]
top.quadde[iq] = savedquadde[j] * scaling[j]
top.quaddb[iq] = savedquaddb[j] * scaling[j]

[thetasave,asave,bsave,apsave,bpsave] = RunSimulation()
fnew = array([thetasave-theta,asave-bsave,apsave-apf,bpsave-bpf])
scaling[i] = temp
fjac[:,i] = (fnew[:]-fvec[:]) / h # Forward difference formula.
g[i] = sum (fjac[:,i]*fvec[:])

xold[:] = scaling[:]
p[:] = -fvec[:]
p = solve_linear_equations (fjac, p);
# Starting linesearch
fold = f
total = sqrt(sum(p[:]*p[:]))
if (total>stpmax):
p[:] = p[:] * stpmax / total # Scale if attempted step is too big.

slope = sum (g[:]*p[:])
if (slope >= 0.0): raise ’Roundoff problem in lnsrch’
junk = zeros ((4),’d’)
for i in range(4): junk[i] = abs (p[i]) / max (abs(xold[i]),1.0)
test = max (junk[:]) # Compute lambda_min
alamin = TOLX / test;
alam = 1.0; # Always try full Newton step first.
f2 = 0;
alam2 = 0;
completed = 0
while (not completed): # Start of iteration loop.
tmplam = 0;
for i in range(4):
iq = iquads[i]
scaling[i] = xold[i] + alam * p[i]
if lfringe:

top.msmmlt[:,:,iq] = savedmsmmlt[:,:,i] * scaling[i]
top.msmmltp[:,:,iq] = savedmsmmltp[:,:,i] * scaling[i]

else:
top.quadde[iq] = savedquadde[i] * scaling[i]
top.quaddb[iq] = savedquaddb[i] * scaling[i]

print ’### Running with new quad settings’
[thetasave,asave,bsave,apsave,bpsave] = RunSimulation()
fvec = array([thetasave-theta,asave-bsave,apsave-apf,bpsave-bpf])
total = sum (fvec[:]*fvec[:])
f = 0.5 * total
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if (alam < alamin):
completed = 1 # Convergence on delta x.

elif (f <= fold + ALF * alam * slope):
completed = 1 # Sufficient function decrease

elif (alam == 1.0):
tmplam = - slope / (2.0 * (f-fold-slope)) # Backtrack first time

else: # Subsequent backtracks.
rhs1 = f - fold - alam * slope;
rhs2 = f2 - fold - alam2 * slope;
a = (rhs1/(alam*alam)-rhs2/(alam2*alam2))/(alam-alam2);
b = (-alam2*rhs1/(alam*alam)+alam*rhs2/(alam2*alam2))/(alam-alam2);
if (a == 0.0): tmplam = - slope / (2.0 * b);
else:
disc = b*b-3.0*a*slope;
if (disc < 0.0): tmplam = 0.5 * alam;
elif (b <= 0.0): tmplam = (-b + sqrt(disc))/(3.0*a);
else: tmplam = - slope / (b + sqrt(disc));

if (tmplam > 0.5 * alam):
tmplam = 0.5 * alam; # lambda <= 0.5 lambda1

alam2 = alam;
f2 = f;
alam = max (tmplam,0.1*alam) # lambda >= 0.1 lambda1

# End of linesearch
print ’### Error is ’, sqrt(2.*f)


